sábado, 27 de mayo de 2017

NASA Presenta los Primeros Resultados Científicos de la Misión Juno

27.05.17.- Los resultados científicos iniciales de la misión Juno de la NASA a Júpiter retratan al mayor de los planetas de nuestro Sistema Solar como un mundo complejo, gigantesco, turbulento… con ciclones del tamaño de la Tierra en los polos, sistemas de tormentas que descienden hacia el corazón del gigante de gas, y un enrome campo magnético e irregular que podría generarse más cerca de la superficie del planeta de lo que se pensaba.


La sonda espacial Juno fue lanzada el 5 de Agosto de 2011, entrando en la órbita de Júpiter el 4 de Julio de 2016. Los hallazgos ahora presentados corresponden al primer sobrevuelo de recolección de datos, que voló a 4.200 kilómetros de los remolinos de nubes de Júpiter el pasado 27 de Agosto.


“Estamos muy contentos de compartir estos primeros descubrimientos, que nos ayudan a comprender mejor lo que hace que Júpiter sea tan fascinante”, dijo Diane Brown, encargada del programa de Juno de la NASA en Washington. "Fue un largo viaje llegar a Júpiter, pero estos primeros resultados ya demuestran que ha valido la pena el viaje.”


"Hay tantas cosas aquí que no esperábamos que hubiéramos tenido que dar un paso atrás y empezar a repensar esto como un Júpiter completamente nuevo", dijo Scott Bolton, investigador principal de Juno en el Instituto de Investigación del Suroeste en San Antonio.


Entre los hallazgos que desafían lo supuesto hasta ahora figuran los proporcionados por la cámara de Juno, JunoCam. Las imágenes muestran que ambos polos de Júpiter están cubiertos por tormentas del tamaño de la Tierra que están densamente agrupadas y rozándose entre sí.


"Estamos perplejos en cuanto a cómo podrían formarse, lo estable que es su configuración y por qué el polo norte de Júpiter no se parece al polo sur", dijo Bolton. "Estamos cuestionando si se trata de un sistema dinámico, y estamos viendo sólo una etapa. Durante el próximo año, vamos a ver si desaparece, o es una configuración estable y estas tormentas están circulando unas alrededor de otras."


Otra sorpresa viene del radiómetro de microondas de Juno (MWR), que muestra la radiación térmica de microondas de la atmósfera de Júpiter, desde la parte superior de las nubes de amoníaco hasta el fondo de su atmósfera. Los datos del MWR indican que las cinturones y otras zonas icónicas de Júpiter son misteriosos, con el cinturón cerca del ecuador penetrando hasta el fondo, mientras que en otras latitudes parecen evolucionar a otras estructuras. Los datos sugieren que el amoníaco es bastante variable y continúa aumentando tan lejos como se puede ver con MWR, que es de unos cientos de kilómetros.  


Antes de la misión Juno, se sabía que Júpiter tenía el campo magnético más intenso en el sistema solar. Las mediciones de la magnetosfera del planeta masivo con el magnetómetro de Juno (MAG), indican que el campo magnético de Júpiter es incluso más fuerte que los modelos esperados, y su forma más irregular. Los datos del MAG indican que el campo magnético excedió en gran medida las expectativas en 7.766 Gauss, aproximadamente 10 veces más fuerte que el campo magnético más fuerte encontrado en la Tierra.


"Juno nos está dando una visión del campo magnético cercano a Júpiter que nunca hemos tenido antes", dijo Jack Connerney, investigador principal adjunto de Juno y el líder de la misión de investigación de campo magnético en el Centro espacial Goddard de la NASA en Greenbelt, Maryland. "Ya vemos que el campo magnético parece voluminoso: es más fuerte en algunos lugares y más débil en otros. Esta distribución desigual sugiere que el campo puede ser generado por la acción de una dinamo más cerca de la superficie, por encima de la capa de hidrógeno metálico. Cada sobrevuelo nos acerca a más a poder determinar dónde y cómo funciona la dinamo de Júpiter".


Juno también está diseñada para estudiar la magnetosfera polar y el origen de las poderosas auroras de Júpiter. Estas emisiones de auroras son causadas por partículas que recogen la energía y golpean las moléculas atmosféricas. Las observaciones iniciales de Juno indican que el proceso parece funcionar de manera diferente en Júpiter que en la Tierra.


Juno está en una órbita polar alrededor de Júpiter, y la mayoría de cada órbita tiene lugar lejos del gigante del gas. Pero, una vez cada 53 días, su trayectoria se aproxima a Júpiter desde arriba de su polo norte, donde comienza un tránsito de dos horas (de polo a polo) volando de norte a sur con sus ocho instrumentos científicos recolectando datos e imágenes con su cámara JunoCam. La descarga de seis megabytes de datos recogidos durante el tránsito puede llevar día y medio.



El polo sur de Júpiter, observado por la nave espacial Juno desde una distancia de 52000 kilómetros. Las estructuras ovales son ciclones de hasta 1000 km de diámetro. Image Credit: NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

sábado, 20 de mayo de 2017

Detectan una Atmósfera Inesperadamente Primitiva Rodeando a un “Neptuno Cálido”

13.05.17.- Un estudio que combina observaciones de los telescopios espaciales Hubble y Spitzer de la NAA ha revelado que el lejano planeta HAT-P-26b posee una atmósfera primitiva compuesta casi por competo de hidrógeno y helio. Situado a 437 años luz de distancia, HAT-P-26b orbita una estrellas que es el doble de vieja que el Sol.


El análisis es uno de los estudios más detallados hasta la fecha de un “Neptuno cálido,” un planeta que tiene el tamaño de Neptuno y se encuentra cerca de su estrella. Los investigadores determinaron que la atmósfera de HAT-P-26b está relativamente libre de nubes y posee una fuerte indicación de agua, aunque el planeta no sea un mundo de agua. Se trata de la mejor medición hasta la fecha de agua en un exoplaneta de este tamaño.


El descubrimiento de una atmósfera con esta composición en este exoplaneta tiene consecuencias sobre lo que piensan los científicos acerca del nacimiento y desarrollo de los sistemas planetarios. Comparado con Neptuno y Urano, los planetas de nuestro Sistema Solar con una masa similar, HAT-P-26b probablemente se formó más cerca de su estrella nodriza o más tarde en el desarrollo de su sistema planetario, o ambos.


“Los astrónomos han comenzado a investigar las atmósferas de estos distantes planetas con la masa de Neptuno, y casi de inmediato, hemos encontrado un ejemplo que va en contra de la tendencia de nuestro sistema solar”, dijo Hannah Wakeford, investigador postdoctoral en el Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland, y autor principal del estudio publicado el 12 Mayo de 2017 en la revista Science. “Este tipo de resultado inesperado es la razón por que realmente me gusta explorar las atmósferas de planetas alienígenas.”


Para estudiar la atmósfera de HAT-P-26b, los investigadores utilizaron datos de tránsitos - cuando el planeta pasa por delante de su estrella anfitriona. Durante un tránsito, una fracción de la luz estelar se filtra a través de la atmósfera del planeta, que absorbe algunas longitudes de onda de la luz, pero no otras. Observando cómo las firmas de luz de las estrellas cambian como resultado de este filtrado, los investigadores pueden trabajar hacia atrás para averiguar la composición química de la atmósfera.
En este caso, el equipo agrupó los datos de cuatro tránsitos medidos por el Hubble y dos vistos por Spitzer. Juntas, estas observaciones cubrieron una amplia gama de longitudes de onda de la luz amarilla a través de la región del infrarrojo cercano.


Como el estudio proporcionó una medida precisa del agua, los investigadores han podido utilizarla para estimar lo rico que es el planeta en elementos “metálicos”, es decir, más pesados que el hidrógeno y el helio, lo que a su vez indica cómo se formó el planeta.


Para comparar los planetas por sus metalicidades, los científicos utilizan el Sol como un punto de referencia, casi como describir cuánto bebidas tienen cafeína comparándolas con una taza de café. Júpiter tiene una metalicidad alrededor de 2 a 5 veces la del Sol. La de Saturno es aproximadamente 10 veces más que la del Sol. Estos valores relativamente bajos significan que los dos gigantes de gas están compuestos casi por completo de hidrógeno y helio.


Los gigantes de hielo Neptuno y Urano son más pequeños que los gigantes de gas pero más ricos en elementos más pesados, con metalicidades de alrededor de 100 veces la del Sol. Por lo tanto, para los cuatro planetas exteriores de nuestro sistema solar, la tendencia es que las metalicidades son más bajas para los planetas más grandes.


Los científicos creen que esto sucedió porque, cuando el sistema solar fue tomando forma, Neptuno y Urano se formaron en una región hacia las afueras de un enorme disco de polvo, gas y escombros que se arremolinaba alrededor del sol inmaduro. Resumiendo el complicado proceso de formación planetaria en pocas palabras: Neptuno y Urano habrían sido bombardeados con un montón de escombros helados que eran ricos en elementos más pesados. Júpiter y Saturno, que se formaron en una parte más caliente del disco, se habrían encontrado con menos de los restos helados.
Dos planetas más allá de nuestro sistema solar también se ajustan a esta tendencia. Uno de ellos es el planeta con la masa de Neptuno HAT-P-11b. El otro es WASP-43b, un gigante de gas dos veces más masivo que Júpiter.


Pero Wakeford y sus colegas descubrieron que HAT-P-26b rompe esa tendencia. Determinaron que su metalicidad es de sólo 4,8 veces la del Sol, mucho más cercano al valor de Júpiter que de Neptuno.

“Este análisis demuestra que hay mucha más diversidad en las atmósferas de estos exoplanetas de lo que esperábamos, lo que nos da una idea de cómo los planetas pueden formarse y evolucionar de manera diferente en nuestro sistema solar”, dijo David K. Sing de la Universidad de Exeter y segundo autor del artículo.



La atmósfera de un lejano “Neptuno cálido” HAT-P-26b, ilustrado aquí, es inesperadamente primitiva, compuesta principalmente por hidrógeno y helio. Image Credit: NASA/GSFC

sábado, 13 de mayo de 2017

La Fusión de Galaxias Tiene Agujeros Negros Encubiertos

10.05.17.- Los agujeros negros tienen mala fama en la cultura popular porque tragan todo lo que hay a su alrededor. En realidad, estrellas, gas y polvo pueden estar en órbita alrededor de los agujeros negros durante largos periodos de tiempo, hasta que una perturbación grande empuje el material hacia el interior.


Una fusión de dos galaxias es una perturbación de este tipo. Cuando las galaxias se combinan y sus agujeros negros centrales se aproximan uno al otro, el gas y el polvo de los alrededores son empujados hacia sus respectivos agujeros negros. Una enorme cantidad de radiación de alta energía es emitida cuando el material se precipita en espiral rápidamente hacia el agujero negro hambriento, que se convierte en lo que los astrónomos llaman un núcleo galáctico activo (AGN).


Un nuevo estudio utilizando el telescopio NuSTAR de la NASA demuestra que en las fases finales de la fusión de galaxias, se ha precipitado tan gran cantidad de gas y de polvo hacia el agujero negro que el AGN, de enorme brillo, queda oculto por ellos. El efecto combinado de la gravedad de las dos galaxias frena las velocidades de giro del gas y el polvo y esta pérdida de energía hace que el material se precipite hacia el agujero negro.


“Cuanto más avanzada es la fusión, más envuelto será el AGN”, dijo Claudio Ricci, autor principal del estudio. “Las galaxias que se hallan en un proceso de unión muy avanzado se encuentra completamente cubiertas por un envoltorio de gas y polvo”.


Ricci y sus colegas observaron las emisiones de rayos X de 52 galaxias. Aproximadamente, la mitad de ellas estaban en la fase final de una fusión. Además de la información del NuSTAR, los investigadores utilizaron la data de Swift y Chandra de la NASA, así como el XMM-Newton de ESA.





Comparaciónnd el crecimiento de un agujero negro supermasivo en dos tipos diferentes de galaxias. Image Credit: NASA/National Astronomical Observatory of Japan