sábado, 23 de septiembre de 2017

El Hubble Descubre un Objeto Único en el Cinturón de Asteroides

22.09.17.- El Telescopio Espacial Hubble de la NASA ayudó a un equipo internacional de astrónomos a descubrir que un objeto inusual en el cinturón de asteroides es, de hecho, dos asteroides que orbitan entre sí y que tienen rasgos similares a los cometas. Éstos incluyen un halo brillante del material, llamado un coma, y una cola larga del polvo.


El Hubble fue utilizado para fotografiar al asteroide, llamado 300163 (2006 VW139), en Septiembre de 2016 justo antes de que el asteroide hiciera su aproximación más cercana al Sol. Las imágenes nítidas del Hubble revelaron que en realidad no era uno, sino dos asteroides de casi la misma masa y tamaño, orbitando entre sí a una distancia de 60 millas.


El asteroide 300163 (2006 VW139) fue descubierto por Spacewatch en Noviembre de 2006 y la posible actividad cometaria fue vista en Noviembre de 2011 por Pan-STARRS. Tanto Spacewatch como Pan-STARRS son proyectos de prospección de asteroides del Programa de Observación de Objetos Cercanos a la Tierra (NEOs) de la NASA. Después de las observaciones Pan-STARRS también se le dio la designación de cometa, 288P. Esto hace que el objeto sea el primer asteroide binario conocido que también está clasificado como un cometa del cinturón principal.


Las observaciones más recientes del Hubble revelaron actividad en curso en el sistema binario. "Detectamos indicaciones fuertes para la sublimación del hielo de agua debido al aumento de la calefacción solar - similar a cómo se crea la cola de un cometa", dijo la líder del equipo Jessica Agarwal del Instituto Max Planck para la Investigación del Sistema Solar, Alemania.


Las características combinadas del asteroide binario, el tamaño de componente casi igual, la alta excentricidad de la órbita y la actividad similar a un cometa también lo hacen único entre los pocos asteroides binarios conocidos que tienen una gran separación. La comprensión de su origen y evolución puede proporcionar nuevos conocimientos sobre los primeros días del sistema solar. Los cometas del cinturón principal pueden ayudar a responder cómo el agua llegó a una Tierra hace miles de millones de años.


El equipo estima que 2006 VW139 / 288P ha existido como un sistema binario desde hace sólo unos 5.000 años. El escenario de formación más probable es una rotura debido a la rotación rápida. 

Después de eso, los dos fragmentos pueden haber sido separados más lejos por los efectos de la sublimación del hielo, que daría un empuje minúsculo a un asteroide en una dirección mientras que las moléculas de agua son eyectadas en la otra dirección.


El hecho de que 2006 VW139/288P sea tan diferente a todos los otros asteroides binarios conocidos plantea algunas preguntas acerca de la frecuencia con que estos sistemas se encuentran en el cinturón de asteroides. "Necesitamos más trabajo teórico y observacional, así como más objetos similares a este objeto para encontrar una respuesta a esta pregunta", concluyó Agarwal.

El Hubble Descubre un Objeto Único en el Cinturón de Asteroides


Este vídeo, creado a partir de varias fotografías captadas por el Hubble, revela a dos asteroides orbitándose entre sí. Credits: NASA, ESA, and J. DePasquale and Z. Levay (STScI)

sábado, 16 de septiembre de 2017

Cassini Finaliza su Histórica Misión de Exploración en Saturno

15.09.17.- La sonda espacial Cassini ha finalizado de forma espectacular su extraordinario viaje de exploración por el sistema saturniano, sumergiéndose en la atmósfera del planeta gaseoso.

La confirmación del final de la misión llegó al Laboratorio de Propulsión a Chorro de la NASA en Pasadena, California, a las 11:55 GMT, tras haberse perdido la señal de la nave 83 minutos antes en Saturno, a unos 1.400 millones de kilómetros de la Tierra.


Los científicos de la misión Cassini en el JPL se felicitan tras dar pon finalizada la misión. Image Credit: NASA/JPL

Cuando, según lo previsto, se agotó el combustible necesario para maniobrar la nave, que durante los últimos 13 años ha viajado por Saturno y sus lunas, la misión acabó con la inmersión programada en el planeta. De esta forma queda garantizado que las lunas heladas de Saturno —y en particular 

Encelado y su océano— no corran riesgo de contaminarse con los microbios terrestres que podrían quedar a bordo de la nave, dejándolas inmaculadas para su futura exploración. 
Cassini ha pasado los últimos cinco meses sumergiéndose entre los anillos de Saturno y su atmósfera en una serie de 22 órbitas finales, que han culminado con la despedida definitiva a Titán el lunes, tras lo cual se puso rumbo al planeta.


La entrada en la atmósfera comenzó un minuto antes de perderse la señal y la nave siguió enviando datos científicos en tiempo casi real hasta que su antena dejó de apuntar hacia la Tierra. Las últimas imágenes se enviaron ayer, antes de la inmersión definitiva, y durante los últimos momentos se efectuaron mediciones de la densidad de plasma, el campo magnético, las temperaturas y la composición atmosférica a una profundidad inédita hasta ahora de la atmósfera saturniana.



Última imagen de Saturno captada por Cassini el 14 de Septiembre, cuando la nave se encontraba a 634.000 km del planeta. Image Credit: NASA/JPL

Lanzada el 15 de octubre de 1997, Cassini llegó a la órbita de Saturno el 30 de junio de 2004, llevando a bordo la sonda Huygens de la ESA, que aterrizó en Titán el 14 de enero de 2005. Durante las dos horas y media que duró su descenso, reveló la superficie que hasta ese momento había permanecido oculta por la densa atmósfera de la luna saturniana, mostrando un mundo de paisajes enigmáticamente similares a los terrestres. 


Cassini continuó realizando desde su órbita sorprendentes descubrimientos en Titán, dado que su radar localizó lagos y mares de metano y otros hidrocarburos, por lo que constituye el único lugar conocido de nuestro Sistema Solar con líquido estable en su superficie. En la atmósfera de esta luna, 

Cassini detectó numerosas moléculas orgánicas complejas, algunas de las cuales están consideradas componentes esenciales para la vida en la Tierra.


No obstante, las lunas de Saturno continuaron sorprendiéndonos con uno de los principales descubrimientos de toda la misión: la detección de columnas heladas procedentes de fisuras en el hemisferio sur de Encélado. Posteriores descubrimientos mostrarían actividad hidrotermal en el fondo del suelo marino, lo que indicaría que este mundo es uno de los lugares más prometedores para buscar vida fuera de la Tierra. 


A lo largo de su misión, Cassini pudo captar a través de sus cámaras las distintas características de los anillos de Saturno. Image Credit: NASA/JPL

La misión también puso de relieve las características únicas del resto de lunas de Saturno, desde Japeto y su cordillera ecuatorial hasta Hiperión, que parece una esponja gigante, y desde Pan con su forma de ravioli hasta Mimas, que nos recuerda a la Estrella de la Muerte de La Guerra de las Galaxias.


Muchos de los descubrimientos de Cassini pueden atribuirse a la longevidad de la misión, que ha incluido dos extensiones, lo que ha permitido a la nave abarcar la mitad del ciclo estacional de Saturno. La primera extensión se concedió con el fin de observar cambios a medida que el planeta alcanzaba el equinoccio, momento en que la luz del Sol incidió paralelamente sobre los anillos. Más tarde se autorizó una extensión de otros siete años para hacer un seguimiento de los recientes descubrimientos en Encélado y Titán, y para estudiar cómo el Sol de verano brillaba sobre el hemisferio norte de Saturno y de sus lunas, mientras la oscuridad invernal llegaba al sur.


El 13 de Septiembre, las cámaras de Cassini captaron esta última imagen correspondiente a los anillos de Saturno. Image Credit: NASA/JPL

Estas extensiones de la misión han sido cruciales para dar cuenta de la evolución de fenómenos dinámicos de pequeña escala en los anillos, como las ‘hélices’, perturbaciones en los anillos provocadas por lunas menores. A lo largo del tiempo, las ‘cuñas radiales’ en los anillos de Saturno —formaciones que giran con los anillos, como los radios de una rueda— aparecían y desaparecían con las estaciones. Durante el equinoccio, se revelaron con todo detalle las estructuras verticales de los anillos, empujadas por las perturbaciones gravitacionales de las lunas cercanas.


Como afirma Nicolas Altobelli, científico del proyecto Cassini de la ESA, “Cassini y Huygens representan un formidable logro científico, tecnológico y humano”. 

“La misión nos ha inspirado con sus prodigiosas imágenes, incluyendo la lección de humildad que nos dan las vistas a lo largo de más de mil millones de kilómetros de distancia hasta el minúsculo punto azul que constituye nuestro planeta. Como es lógico, nos entristece que la misión acabe, pero también es el momento de celebrar este viaje pionero, que nos deja un rico legado de ciencia e ingeniería que allanará el camino para futuras misiones”. 


Los planificadores de misiones ya disponen de una nueva generación de exploradores de planetas océano, aunque por ahora va a ser Júpiter quien asuma el protagonismo. La ESA está preparando el lanzamiento en 2022 del orbitador de las lunas de hielo jovianas, JUICE, que se centrará en el potencial de habitabilidad de sus grandes satélites acuáticos —Europa, Ganímedes y Calisto—, mientras que la NASA planifica la misión Europa Clipper, dedicada a sobrevolar esa luna helada.

sábado, 9 de septiembre de 2017

a Mejor Imagen de la Superficie y la Atmósfera de una Estrella

24.08.17.- Utilizando el interferómetro del VLT (VLTI, Very Large Telescope Interferometer) de ESO, un equipo de astrónomos ha construido la imagen más detallada de una estrella obtenida hasta la fecha —la estrella supergigante roja Antares—. También han realizado el primer mapa de las velocidades del material en la atmósfera de una estrella que no es el Sol, revelando inesperadas turbulencias en la enorme y extendida atmósfera de Antares. Los resultados fueron publicados en la revista Nature.

A simple vista, la famosa y brillante estrella Antares refulge en fuertes tonos rojo en el corazón de la constelación de Escorpio (el escorpión). Es una enorme estrella supergigante roja, relativamente fría y en las últimas etapas de su vida, camino de convertirse en una supernova.

Ahora, un equipo de astrónomos, dirigido por Keiichi Ohnaka, de la Universidad Católica del Norte (Chile), ha utilizado el VLTI (el interferómetro del VLT, Very Large Telescope de ESO), instalado en el Observatorio Paranal, en Chile, para mapear la superficie de Antares y medir los movimientos del material superficial. Es (sin contar a nuestro Sol) la mejor imagen de la superficie y la atmósfera de una estrella que se haya obtenido hasta ahora.

El VLTI es una instalación única que puede combinar la luz de hasta cuatro telescopios, ya sean las Unidades de Telescopio de 8,2 metros o los Telescopios Auxiliares, más pequeños, para crear un telescopio virtual, equivalente a un solo espejo de hasta 200 metros. Esto permite resolver detalles finos más allá de lo que puede verse con un único telescopio.

"Durante la última mitad del siglo, ha sido complicado saber cómo pierden su masa de una forma tan rápida estrellas que, como Antares, están en la fase final de su evolución", afirmó Keiichi Ohnaka, quien también es el autor principal del artículo. "El VLTI es la única instalación que podía permitirnos medir directamente los movimientos del gas en la atmósfera de Antares, un paso crucial para aclarar este problema. El próximo desafío es identificar qué es lo que está impulsando los movimientos turbulentos".

Con los nuevos resultados, el equipo ha creado el primer mapa de dos dimensiones de la velocidad de la atmósfera de una estrella que no es el Sol. Lo hicieron utilizando el VLTI con tres de los Telescopios Auxiliares y un instrumento llamado AMBER para hacer imágenes individuales de la superficie de Antares sobre un rango pequeño de longitudes de onda infrarrojas. Luego, el equipo utilizó estos datos para calcular la diferencia entre la velocidad de los gases atmosféricos en diferentes posiciones en la estrella y la velocidad media de toda la estrella. Esto dio lugar a un mapa de la velocidad relativa de los gases atmosféricos a través de todo el disco de Antares: el primero jamás creado para una estrella que no fuera el Sol.

Los astrónomos detectaron gas turbulento y de baja densidad mucho más alejado de la estrella que lo predicho y concluyeron que el movimiento no podría ser resultado de la convección, la cual transfiere radiación desde el núcleo hacia la atmósfera exterior de muchas estrellas. Entienden que, para explicar estos movimientos en la atmósfera extendida de supergiantes rojas como Antares, sería necesario un proceso nuevo y actualmente desconocido.

"En el futuro, esta técnica de observación se puede aplicar a diferentes tipos de estrellas para estudiar sus superficies y atmósferas con un detalle sin precedentes. Hasta ahora, esto se había limitado solo al Sol", concluye Ohnaka. “Nuestro trabajo lleva a la astrofísica estelar a una nueva dimensión y abre una ventana completamente nueva para observar estrellas”.



Visión reconstruida del VLTI de la superficie de Antares. Image Credit: ESO/K. Ohnaka

sábado, 2 de septiembre de 2017

Detectan Enormes Reservas Ocultas de Gas Turbulento en Galaxias Distantes

30.08.17.- Con ALMA se han podido detectar reservas turbulentas de gas frío alrededor de galaxias de formación estelar distantes. Al detectar CH+ por primera vez, esta investigación abre un nuevo camino de exploración sobre una época crucial de la formación estelar en el Universo. La presencia de esta molécula arroja nueva luz sobre cómo las galaxias consiguen extender su período de rápida formación estelar. Los resultados aparecen en la revista Nature.


Un equipo liderado por Edith Falgarone (Ecole Normale Supérieure y el Observatorio de Paris, Francia) han utilizado el Atacama Large Millimeter/submillimeter Array (ALMA) para detectar marcas de la molécula de hidruro de carbono CH+ en galaxias starburst distantes. El grupo identificó señales claras de CH+ en cinco de seis galaxias estudiadas, incluyendo Cosmic Eyelash. Esta investigación entrega nueva información que ayuda a que los astrónomos entiendan el crecimiento de las galaxias, y cómo los alrededores de una galaxia impulsan la formación estelar.


“CH+ es una molécula especial. Necesita mucha energía para formarse y es muy reactiva, lo que significa que su vida es muy breve y que no puede ser transportada muy lejos. CH+ por lo tanto rastrea la forma en que la energía fluye en las galaxias y sus alrededores”, indicó Martin Zwaan, astrónomo de ESO que contribuyó en el artículo.


La forma en la que el CH+ rastrea la energía puede entenderse por analogía a estar en un bote en un océano tropical durante una noche oscura, sin Luna. Cuando hay buenas condiciones, el plancton fluorescente puede iluminar el entorno del bote mientras navega. La turbulencia causada por el bote al deslizarse por las aguas, provoca que el plancton emita luz, lo cual revela la existencia de las regiones turbulentas en el agua oscura subyacente. Dado que el CH+ se forma únicamente en áreas pequeñas donde los movimientos turbulentos del gas se disipan, su detección esencialmente rastrea la energía en una escala galáctica.


El CH+ observado revela ondas de choque densas, impulsadas por vientos galácticos veloces y cálidos originados al interior de las regiones de formación estelar de las galaxias. Estos vientos fluyen a través de una galaxia, expulsando material de esta, pero sus movimientos turbulentos son tales que parte del material puede ser recapturado por la atracción gravitatoria de la galaxia misma. Este material se reúne en reservas turbulentas enormes de gas frío y de baja densidad, extendiéndose más de 30.000 años luz desde la región de formación estelar de la galaxia.


“Con el CH+ vemos que la energía se almacena dentro de grandes vientos del tamaño de una galaxia, y termina como movimientos turbulentos en reservas antes desconocidas de gas frío alrededor de la galaxia”, afirmó Falgarone, autor principal del nuevo artículo “Nuestros resultados desafían la teoría de la evolución de la galaxia. Al impulsar la turbulencia en las reservas, estos vientos galácticos extienden la fase del estallido de formación estelar, en vez de  extinguirla”.


El equipo determinó que los vientos galácticos no podrían por sí solos reponer las reservas gaseosas recientemente reveladas, y sugiere que la masa es proporcionada por fusiones galácticas o por la acreción de corrientes de gas ocultas, como predice la teoría actual.


“Este descubrimiento representa un gran paso adelante en nuestro entendimiento sobre cómo la afluencia de materia es regulada alrededor de las galaxias de formación estelar más intensas del Universo primitivo”, indicó el Director de Ciencias de ESO, Rob Ivison, coautor del artículo. “Esto muestra lo que puede lograrse cuando científicos de distintas disciplinas se reúnen para aprovechar las capacidades de uno de los telescopios más poderosos del mundo”.


Concepto artístico del gas que alimenta galaxias de formación de estrellas distantes. Image Credit: ESO/L. Benassi

sábado, 26 de agosto de 2017

El Telescopio Webb Estudiará los "Mundos Oceánicos" de Nuestro Sistema Solar

24.08.17.- El Telescopio Espacial James Webb de la NASA utilizará sus capacidades infrarrojas para estudiar los "mundos oceánicos" de la luna de Júpiter Europa y la luna Encelado de Saturno, sumándose a las observaciones realizadas anteriormente por los orbitadores de la NASA Galileo y Cassini. Las observaciones del telescopio Webb también podrían ayudar a guiar futuras misiones a las lunas heladas.


Europa y Encelado están en la lista de objetivos del telescopio Webb seleccionados por científicos que ayudaron a desarrollar el telescopio y así llegar a estar entre los primeros en usarlo para observar el universo. Uno de los objetivos científicos del telescopio es estudiar planetas que podrían ayudar a arrojar luz sobre los orígenes de la vida, pero esto no sólo significa exoplanetas; Webb también ayudará a desentrañar los misterios que aún mantienen los objetos de nuestro propio sistema solar (desde Marte hacia el exterior).


Geronimo Villanueva, científico planetario en el Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland, es el científico principal en la observación del telescopio Webb de Europa y Encelado. Su equipo es parte de un esfuerzo más grande para estudiar nuestro sistema solar con el telescopio, encabezado por la astrónoma Heidi Hammel, vicepresidenta ejecutiva de la Asociación de Universidades de Investigación en Astronomía (AURA). La NASA seleccionó a Hammel como científico interdisciplinario para Webb en 2002.


De particular interés para los científicos son los chorros o columnas de agua que rompen la superficie de Encelado y Europa, y que contienen una mezcla de vapor de agua y productos químicos orgánicos simples. Las misiones Cassini-Huygens y Galileo de la NASA y el Telescopio Espacial Hubble de la NASA, reunieron previamente pruebas de que estos chorros son el resultado de procesos geológicos que calientan grandes océanos bajo la superficie. "Elegimos estas dos lunas debido a su potencial para exhibir firmas químicas de interés astrobiológico", dijo Hammel.


Villanueva y su equipo planean utilizar la cámara de infrarrojos cercano de Webb (NIRCam) para tomar imágenes de Europa en alta resolución, que utilizarán para estudiar su superficie y para buscar regiones superficiales calientes indicativas de la actividad de los chorros y de los procesos geológicos activos. Una vez que localicen una columna de agua, usarán el espectrógrafo infrarrojo cercano (NIRSpec) de Webb y el instrumento infrarrojo medio (MIRI) para analizar espectroscópicamente la composición de los chorros.


Las observaciones del telescopio Webb podrían ser particularmente reveladoras para los chorros de Europa, cuya composición sigue siendo en gran medida un misterio. "¿Están hechos de hielo de agua? ¿Se libera vapor de agua caliente? ¿Cuál es la temperatura de las regiones activas y el agua emitida? ", dijó Villanueva. "Las mediciones del telescopio Webb nos permitirán abordar estas preguntas con una precisión sin precedentes".


Para Encelado, Villanueva explicó que debido a que esa luna es casi 10 veces más pequeña que Europa, como se ve desde el telescopio Webb, imágenes de alta resolución de su superficie no serán posibles. Sin embargo, el telescopio todavía puede analizar la composición molecular de los chorros de Enceladus y realizar un amplio análisis de sus características superficiales. Gran parte del terreno de la luna ya ha sido mapeado por la sonda espacial Cassini de la NASA , que ha pasado aproximadamente 13 años estudiando Saturno y sus satélites. 


La evidencia de vida en los chorros podría resultar aún más difícil de alcanzar. Villanueva explicó que si bien el desequilibrio químico en los chorros (una abundancia inesperada o escasez de ciertos químicos) podría ser un signo de los procesos naturales de la vida microbiana, también podría ser causado por procesos geológicos naturales.


Mientras que el telescopio Webb puede ser incapaz de responder concretamente si los océanos subsuperficiales de las lunas contienen vida, Villanueva dijo que será capaz de identificar y caracterizar mejor las regiones activas de las lunas que podrían merecer más estudios. Las futuras misiones, como la Europa Clipper de la NASA, cuyo objetivo primordial es determinar si Europa es habitable, podrían utilizar los datos de Webb para perfeccionarse en lugares privilegiados para su observación.


Posibles resultados espectroscópicos de uno de los chorros de agua de Europa. Este es un ejemplo de los datos que el telescopio Webb podría recoger. Image Credit: NASA-GSFC/SVS, Telescopio Espacial Hubble, Stefanie Milam, Geronimo Villanueva

sábado, 19 de agosto de 2017

21 de Agosto de 2017: Eclipse Total de Sol

15.08.17.- El 21 de agosto de 2017 se producirá todo un acontecimiento astronómico: un eclipse total de Sol. Los observadores situados a lo largo de la franja de 115 km de ancho que va desde Oregón a Carolina del Sur, en los Estados Unidos, se encontrarán en esta ruta del eclipse total, que alcanzará su punto máximo a las 18:26 GMT. Durante un máximo de 2 minutos y 40 segundos, las personas que se encuentren en los lugares adecuados se verán bañadas por un misterioso crepúsculo en mitad del día.


Aunque no es posible ver el eclipse en su totalidad desde Europa, quienes estén en las regiones más al oeste podrán ver un eclipse parcial al atardecer, antes de que el Sol se ponga en el horizonte. También en varios países de América del Sur se podrá ver el eclipse de manera parcial.


Mapa de la trayectoria de visibilidad del eclipse de sol del 21 de Agosto. Cortesía de greatamericaneclipse.com

Un eclipse solar ocurre cuando la luna proyecta una sombra sobre la tierra bloqueando total o parcialmente la luz del sol en ciertas zonas. Esto convertirá el día en la noche y hará visible la corona solar, la atmósfera exterior del Sol, la cual usualmente esta cubierta y es uno de los fenómenos naturales más asombrosos. Las estrellas brillantes y los planetas también se harán visibles. También se podrá observar el centelleante efecto de ‘anillo de diamantes’, que se produce cuando el último y el primero de los rayos del Sol resplandecen justo antes y después de que se produzca el eclipse total.
Observar la corona forma parte del trabajo diario del Observatorio Heliosférico y Solar (SOHO) de la ESA/NASA, que puede emplear un filtro especial para bloquear la luz del Sol. Durante el eclipse total en la Tierra, SOHO ofrecerá interesante información contextual sobre la corona y la actividad solar desde su puesto de observación en el espacio.

Fuera de la ‘ruta de totalidad’, los observadores disfrutarán de un eclipse parcial: verán cómo la Luna tapa un pedazo del disco solar.

Además, los astronautas a bordo de la Estación Espacial Internacional, podrán estudiar algunos aspectos del eclipse. Desde su perspectiva privilegiada, podrán ver eclipses parciales y, con suerte, capturarán la sombra de la Luna sobre la superficie de nuestro planeta.

Si tienes la suerte de poder observar este acontecimiento, debes tener mucho cuidado: nunca se debe mirar directamente al Sol, ya que si no se utiliza una protección adecuada, se pueden causar graves daños oculares. Existen varias maneras de observar el evento, bien a través de gafas especiales, o telescopios con filtros adecuados. Pero recuerde, NUNCA se debe de mirar directamente al Sol.

sábado, 12 de agosto de 2017

Un CubeSat Mide la Energía Saliente de la Tierra

09.08.17.- Un pequeño satélite experimental ha recogido con éxito y entregado datos sobre una medida clave para predecir los cambios en el clima de la Tierra.


El CubeSat RAVAN, fue lanzado a la órbita baja terrestre el 11 de Noviembre de 2016, con el fin de probar nuevas tecnologías que ayudan a medir el desequilibrio de la radiación de la Tierra, que es la diferencia entre la cantidad de energía del Sol que llega a la Tierra y la cantidad que se refleja y se emite de vuelta al espacio. Esa diferencia, estimada en menos el uno por ciento, es responsable del calentamiento global y del cambio climático.


Diseñado para medir la cantidad de energía solar y térmica reflejada que se emite en el espacio, RAVAN emplea dos tecnologías que nunca antes se han utilizado en una nave espacial en órbita: nanotubos de carbono que absorben la radiación de salida y un cuerpo negro de cambio de fase de galio para la calibración.


Entre los materiales más negros conocidos, los nanotubos de carbono absorben virtualmente toda la energía a través del espectro electromagnético. Su propiedad absorbente los hace adecuados para medir con exactitud la cantidad de energía reflejada y emitida desde la Tierra. El galio es un metal que se funde - o cambia de fase - en torno a la temperatura del cuerpo, por lo que es un punto de referencia coherente. Los radiómetros de RAVAN miden la cantidad de energía absorbida por los nanotubos de carbono y las células de cambio de fase de galio monitorean la estabilidad de los radiómetros.


RAVAN comenzó a recolectar y enviar los datos de radiación el 25 de Enero y ahora ha estado operativo mucho más allá de su período original de misión de seis meses.

"Hemos estado haciendo mediciones de la radiación de la Tierra con los nanotubos de carbono y haciendo calibraciones con las células de cambio de fase de galio, así que hemos cumplido con éxito nuestros objetivos de misión", dijo el investigador principal Bill Swartz del Laboratorio de Física Aplicada Johns Hopkins en Laurel, Maryland. Él y su equipo ahora están monitoreando RAVAN a largo plazo para ver cómo el instrumento cambia con el tiempo y también están realizando el análisis de datos y comparando sus medidas con simulaciones de modelo existentes de radiación saliente de la Tierra.


Si bien la demostración de tecnología comprende un solo CubeSat, en la práctica una misión RAVAN en el futuro operaría muchos CubeSats en una constelación para medir la energía saliente de la Tierra se encuentran actualmente a bordo de unos grandes satélites y, aunque tienen una alta resolución espacial, no pueden observar el planeta entero simultáneamente, como la haría una constelación de CubeSats RAVAN.


"Sabemos que la radiación saliente de la Tierra varía mucho con el tiempo dependiendo de variables como nubes o aerosoles o cambios de temperatura", dijo Swartz. "Una constelación puede proporcionar una cobertura global, 24/7, que mejorará estas mediciones." 


Los satélites pequeños , incluyendo los CubeSats, están desempeñando un papel cada vez más importante en la exploración, demostración de tecnología, investigación científica e investigaciones educativas en la NASA, incluyendo: exploración del espacio planetario; observaciones de la Tierra; ciencia fundamental de la Tierra y del espacio; y el desarrollo de instrumentos científicos precursores como las comunicaciones láser de vanguardia, las comunicaciones de satélite a satélite y las capacidades de movimiento autónomo.


El CubeSat RAVAN ha demostrado con éxito nuevas tecnologías para medir la cantidad de energía solar y térmica reflejada que se emite en el espacio. Image Credit: Johns Hopkins University Applied Physics Laboratory

sábado, 5 de agosto de 2017

Hace Cinco Años y a 248 Millones de Kilómetros: Aterrizaje!

04.08.17.- El rover explorador Curiosity de la NASA, que aterrizó cerca del Monte Sharp en Marte hace cinco años esta semana, está examinando pistas en esa montaña sobre los antiguos lagos de Marte.


El 5 de Agosto de 2012, el equipo de la misión en el Laboratorio de Propulsión a Chorro de la NASA en Pasadena, California, se emocionó al recibir la confirmación de radio y las primeras imágenes de que el rover había tocado suelo marciano usando un nuevo método de aterrizaje llamado "grúa aérea". Las transmisiones a la velocidad de la luz tardaron casi 14 minutos en viajar desde Marte a la Tierra, que ese día estaba a unos 248 millones de kilómetros de distancia.


Esas primeras imágenes incluían una vista del Monte Sharp. La misión logró su objetivo principal en menos de un año, antes de llegar a la montaña. Se determinó que un ambiente de un lago antiguo en esta parte de Marte ofrecía las condiciones necesarias para la vida - agua dulce, otros ingredientes químicos clave y una fuente de energía.


En el Monte Sharp desde 2014, Curiosity ha examinado ambientes donde tanto el agua como el viento han dejado sus huellas. Habiendo estudiado más de 600 pies verticales de roca con signos de lagos y aguas subterráneas posteriores, el equipo científico internacional de Curiosity concluyó que las condiciones habitables perduraron durante al menos millones de años. Con mayores destinos por delante, Curiosity continuará explorando cómo este mundo habitable cambió a través del tiempo.



sábado, 29 de julio de 2017

¿Un Motor Universal de la Química Prebiótica en Titán?

26.07.17.- La misión internacional Cassini ha detectado por sorpresa una molécula que resulta fundamental en la producción de moléculas orgánicas complejas en la neblinosa atmósfera de Titán.


Esta luna saturniana presenta una densa atmósfera de nitrógeno y metano con una de las químicas más complejas conocidas en el Sistema Solar. Se cree que incluso podría parecerse a la atmósfera de las primeras fases de la Tierra, antes de la formación de oxígeno. Así, Titán puede considerarse un laboratorio a escala planetaria para estudiar e intentar comprender las reacciones químicas que podrían haber dado lugar a la vida en la Tierra y que podrían estar desarrollándose en planetas situados alrededor de otras estrellas. 


En la atmósfera superior de Titán, el nitrógeno y el metano se hallan expuestos a la energía del Sol y a las partículas energéticas de la magnetosfera saturniana. Estas fuentes de energía desencadenan reacciones de nitrógeno, hidrógeno y carbono, que originan compuestos prebióticos más complicados. 


Estas grandes moléculas descienden hacia la baja atmósfera, formando una densa neblina de aerosoles orgánicos que se cree que podrían llegar a la superficie. No obstante, el proceso según el cual las moléculas simples de la alta atmósfera se transforman en la neblina orgánica compleja a altitudes menores es complicado y difícil de determinar.


Un resultado sorprendente de la misión Cassini ha sido el descubrimiento de un tipo concreto de molécula cargada negativamente en Titán. Los científicos no preveían encontrar estos iones con carga negativa, o ‘aniones’, dado que son altamente reactivos y no deberían durar mucho en la atmósfera de Titán antes de combinarse con otros materiales. Su detección ha dado un vuelco a nuestros conocimientos actuales de la atmósfera de esta luna. 


En nuevo estudio publicado en Astrophysical Journal Letters, los científicos identifican algunos de los tipos cargados negativamente como ‘aniones de cadena carbonada’. Se entiende que estas moléculas lineales son los componentes de moléculas más complejas y podrían ser la base de las formas más antiguas de vida en la Tierra.

La compleja atmósfera de Titán. Image Credit: NASA/ESA

Las detecciones se efectuaron con el espectrómetro de plasma de Cassini, denominado CAPS, mientras la misión atravesaba la alta atmósfera de Titán, entre 950 y 1.300 km por encima de la superficie. Cabe destacar que los datos mostraron que las cadenas de carbonos se iban agotando cuanto menor era la distancia a la luna, mientras que los precursores de moléculas de aerosoles mayores iban aumentando rápidamente, lo que sugiere una estrecha relación entre ambos, con las cadenas dando lugar a las moléculas mayores.


“Por primera vez hemos identificado claramente aniones de cadena carbonada en una atmósfera planetaria, iones que consideramos clave a la hora de producir moléculas orgánicas más grandes y complejas, como las grandes partículas que forman la bruma de Titán”, indica Ravi Desai, del University College London y autor principal del estudio. 


“Se trata de un proceso conocido en el medio interestelar, pero que ahora hemos visto en un entorno completamente distinto, por lo que podría representar un proceso universal que da lugar moléculas orgánicas complejas”. 


“La pregunta es: ¿podría suceder lo mismo en otras atmósferas formadas por nitrógeno y metano, como Plutón o Tritón, o en exoplanetas con propiedades similares?” 


“La idea de una proceso universal que dé lugar a los ingredientes para la vida determinaría lo que debemos buscar si queremos encontrar vida en el Universo”, explica Andrew Coates, también del University College London, coautor del estudio y coinvestigador de CAPS. 


“Titán constituye un ejemplo local de química exótica y apasionante de la que tenemos mucho que aprender”. 


Los 13 años de odisea de Cassini en el sistema saturniano pronto llegarán a su fin, pero misiones futuras como el telescopio espacial James Webb (JWST) y la misión de búsqueda de exoplanetas PLATO de la ESA cuentan con lo necesario para identificar este proceso, no solo en nuestro Sistema Solar sino también más allá. Además, instalaciones terrestres avanzadas como ALMA también serían capaces de llevar a cabo desde la Tierra observaciones de seguimiento de este proceso que se está produciendo en la atmósfera titánica. 


“Estos reveladores resultados de Cassini muestran la importancia de rastrear el recorrido desde las especies químicas menores a las mayores, para así comprender cómo se producen las moléculas orgánicas más complejas en atmósferas similares a las de la antigua Tierra”, añade Nicolas Altobelli, científico del proyecto Cassini de la ESA. 


“Aunque no hemos detectado vida como tal, encontrar sustancias orgánicas complejas, y no solo en Titán, sino también en cometas y a lo largo del medio interestelar, nos acerca cada vez más al descubrimiento de sus precursores”.


Este gráfico muestra la composición química en la atmósfera de Titán. Image Credit: ESA

sábado, 22 de julio de 2017

El Hubble Observa a Fobos Orbitando Marte

21.07.17.- El agudo ojo del Telescopio Espacial Hubble de la NASA ha capturado la diminuta luna Fobos durante su recorrido orbital alrededor de Marte. Es tan pequeña que parece una estrella en las imágenes del Hubble.

En el transcurso de 22 minutos, el Hubble tomó 13 exposiciones separadas, permitiendo a los astrónomos crear un video de lapso de tiempo mostrando el trayecto orbital de la diminuta luna.

Con un volumen de 26 por 21 por 17 kilómetros, Fobos es una de las lunas más pequeñas en el sistema solar. Completa una órbita en sólo 7 horas y 39 minutos, que es más rápido de lo que Marte gira. Al levantarse en el oeste marciano, da tres vueltas alrededor del Planeta Rojo en el curso de un día marciano, que es de aproximadamente 24 horas y 40 minutos. Es el único satélite natural en el sistema solar que circunda su planeta en un tiempo más corto que el día del planeta padre.

Unas dos semanas después del aterrizaje lunar tripulado del Apolo 11 el 20 de Julio de 1969, la sonda Mariner 7 de la NASA voló sobre el Planeta Rojo y tomó la primera instantánea en bruto de Fobos. El 20 de Julio de 1976, la Viking 1 de la NASA aterrizó en la superficie marciana. Un año más tarde, su nave nodriza, el Viking 1 orbiter, tomó la primera fotografía detallada de Fobos, revelando un cráter abismal de un impacto que casi destrozó la luna.

Fobos fue descubierto por Asaph Hall el 17 de Agosto de 1877 en el Observatorio Naval de los Estados Unidos en Washington, DC, seis días después de encontrar la luna más pequeña y externa llamada Deimos. Hall buscaba deliberadamente lunas marcianas.

Ambas lunas llevan el nombre de los hijos de Ares, el dios griego de la guerra, que era conocido como Marte en la mitología romana. Fobos (pánico o miedo) y Deimos (terror o temor) acompañaron a su padre a la batalla.


El Hubble Observa a Fobos Orbitando Marte

Fotos en primer plano de una nave espacial en órbita de Marte revelan que Fobos parece estar siendo desgarrado por la atracción gravitatoria de Marte. La luna está empañada por surcos largos y poco profundos que probablemente son causados por interacciones de marea con su planeta padre. Fobos se acerca a Marte alrededor de 2 metros cada cien años. Los científicos predicen que dentro de 30 a 50 millones de años, o bien se estrellará contra el Planeta Rojo o será despedazado y quedará disperso como un anillo alrededor de Marte.

Orbitando a casi 6.000 kilómetros sobre la superficie de Marte, Fobos está más cerca de su planeta padre que cualquier otra luna en el sistema solar. A pesar de su proximidad, los observadores en Marte verían a Fobos con apenas un tercio de la anchura de la luna llena vista desde la Tierra. Por el contrario, alguien de pie en Fobos vería a Marte dominando el horizonte, ocupando un cuarto del cielo.

Desde la superficie de Marte, Fobos se puede ver eclipsando el Sol. Sin embargo, es tan pequeño que no cubre completamente nuestra estrella. Los tránsitos de Fobos a través del sol han sido fotografiados por varias naves espaciales.

El origen de Fobos y Deimos todavía está siendo debatido. Los científicos concluyeron que las dos lunas estaban hechas del mismo material que los asteroides. Esta composición y sus formas irregulares llevaron a algunos astrofísicos a teorizar que las lunas marcianas provenían del cinturón de asteroides.

Sin embargo, debido a sus órbitas estables, casi circulares, otros científicos dudan que las lunas nacieron como asteroides. Tales órbitas son raras para los objetos capturados, que tienden a moverse erráticamente. Una atmósfera podría haber frenado a Fobos y Deimos y haberlos acomodado en sus órbitas actuales, pero la atmósfera marciana es demasiado delgada para circularizar las órbitas. 

Además, las lunas no son tan densas como los miembros del cinturón de asteroides.
Fobos puede ser un montón de escombros que se mantiene unido por una fina corteza. Puede haberse formado a medida que el polvo y las rocas que circundan Marte fueron unidas por la gravedad. O puede haber experimentado un nacimiento más violento, donde una gran cantidad de estrellas contra Marte lanzó pedazos hacia el cielo, y esas piezas fueron reunidas por la gravedad. Tal vez una luna existente fue destruida, reducida a los escombros que se convertirían en Fobos.

El Hubble tomó las imágenes de Fobos orbitando el Planeta Rojo el 12 de mayo de 2016, cuando Marte estaba a 75 millones de kilómetros de la Tierra. Esto fue sólo unos días antes de que el planeta pasara más cerca de la Tierra en su órbita en los últimos 11 años.



sábado, 15 de julio de 2017

Espectacular Vídeo de un Sobrevuelo Sobre Plutón con Datos de New Horizons

14.07.17.- El 14 de Julio de 2015, la nave espacial New Horizons de la NASA envió a la Tierra las primeras imágenes de Plutón y sus lunas, increíbles imágenes que inspiraron a muchos a preguntarse cómo sería un vuelo sobre el terreno helado de estos lejanos mundos.

Utilizando los datos actuales de New Horizons y los modelos digitales de elevación de Plutón y su luna más grande, Caronte, los científicos de la misión han creado películas del sobrevuelo de ambos objetos que ofrecen espectaculares nuevas perspectivas de las muchas características inusuales que fueron descubiertas y que han reformado nuestras opiniones sobre el sistema de Plutón, desde un punto de vista aún más cercano que la propia nave espacial.

Este impresionante sobrevuelo por Plutón comienza sobre las tierras altas al suroeste de la gran extensión plana de hielo de nitrógeno informalmente llamada Sputnik Planitia. 

El espectador primero pasa sobre el borde occidental de Sputnik, donde se encuentra el oscuro terreno lleno de cráteres de Cthulhu Macula, con las cadenas montañosas bloqueadas situadas dentro de las llanuras vistas en la derecha. La gira se desplaza hacia el norte pasando por las accidentadas y fracturadas tierras altas de Voyager Terra y luego gira hacia el sur sobre Pioneer Terra - que exhibe profundos y anchos pozos - antes de concluir sobre Tártaro Dorsa en el extremo oriental del hemisferio en el que se produjo el sobrevuelo.


El igualmente emocionante vuelo sobre Caronte  comienza en lo alto del hemisferio por el cual New Horizons realizó su acercamiento más cercano, luego desciende sobre el cañón profundo y ancho de Serenity Chasma. La vista se mueve hacia el norte, pasando por el cráter Dorothy Gale y la oscura capa polar de Mordor Macula. El vuelo gira entonces hacia el sur, cubriendo el terreno norteño de Oz Terra antes de terminar sobre las planicies ecuatoriales relativamente planas de Vulcan Planum y las "montañas moated" de Clarke Montes.


El relieve topográfico es exagerado por un factor de dos a tres veces en estas películas para enfatizar la topografía. Los colores de la superficie de Plutón y Caronte también se han mejorado para poner de manifiesto los detalles.


La cartografía digital y la representación fueron realizadas por Paul Schenk y John Blackwell del Instituto Lunar y Planetario en Houston.


sábado, 8 de julio de 2017

Una Espiral Deslumbrante con Corazón Activo

05.07.17.- El telescopio VLT (Very Large Telescope) de ESO ha captado una magnífica imagen frontal de la galaxia espiral barrada Messier 77. La imagen hace justicia a la belleza de la galaxia, destacando sus brillantes brazos entrecruzados con carriles de polvo, pero no desvela la naturaleza turbulenta de Messier 77.


Esta pintoresca galaxia espiral parece tranquila, pero hay más de lo que parece. Messier 77 (también conocida como NGC 1068) es una de las galaxias activas más cercanas, unos de los objetos más espectaculares y energéticos del universo. Sus núcleos suelen ser lo suficientemente brillantes como para eclipsar a todo el resto de la galaxia. Las galaxias activas están entre los objetos más brillantes del universo y emiten luz en la mayoría de longitudes de onda (si no todas), desde los rayos gamma y rayos X hasta las microondas y las ondas de radio. Messier 77 se clasifica, además, como una galaxia Seyfert de tipo II, caracterizada por ser particularmente brillante en longitudes de onda infrarrojas.


El responsable de esta impresionante luminosidad es el intenso chorro de radiación que emana del “motor” central, el disco de acreción que rodea a un agujero negro supermasivo. La materia que cae hacia el agujero negro se comprime y se calienta a temperaturas increíbles, haciendo que irradie una cantidad tremenda de energía. Se cree que este disco de acreción está envuelto en una gruesa estructura en forma de anillo de gas y polvo, llamado "toro". Las observaciones de Messier 77 del año 2003 con el potente interferómetro del VLT (eso0319) fueron las primeras en resolver una estructura de este tipo.


Esta imagen de Messier 77 fue tomada en cuatro bandas de diferentes longitudes de onda, representadas por los colores  azul, rojo, violeta y rosado (hidrógeno alfa). Cada longitud de onda muestra una característica diferente: por ejemplo, los puntos rosados de hidrógeno alfa muestran las estrellas calientes y jóvenes que se están formando en los brazos espirales, mientras que en rojo vemos las finas estructuras filamentosas, parecidas a hilos, del gas que rodea a Messier 77. También vemos, en primer plano, una estrella de la Vía Láctea junto al centro de la galaxia, mostrando delatores picos de difracción. 

Además, pueden verse muchas más galaxias que, en las afueras de los brazos espirales, parecen pequeñas y delicadas en comparación con la colosal galaxia activa.


Situada a 47 millones de años luz, en la constelación de Cetus (el monstruo marino), Messier 77 es una de las más remotas galaxias del Catálogo Messier. Inicialmente, Messier creía que el luminoso objeto que vio a través de su telescopio era un cúmulo de estrellas pero, con el avance de la tecnología, se acabó descubriendo su verdadera naturaleza de galaxia. Con un tamaño de unos 100.000 años luz, Messier 77 es también una de las galaxias más grandes del catálogo Messier, tan masiva que su gravedad hace que otras galaxias cercanas se retuerzan y deformen.


Esta imagen fue obtenida con el instrumento FORS2 (FOcal Reducer and low dispersion Spectrograph 2, espectrógrafo de baja dispersion y reducción focal 2), instalado en la Unidad de Telescopio 1 (Antu) del VLT, situado en el Observatorio Paranal de ESO, en Chile. Proviene del programa Joyas cósmicas de ESO, una iniciativa de divulgación que produce imágenes de objetos interesantes, enigmáticos o visualmente atractivos utilizando telescopios de ESO, con un fin educativo y divulgativo.


La deslumbrante galaxia Messier 77. Image Credit: ESO

sábado, 1 de julio de 2017

Un Algoritmo Ayuda a Proteger las Ruedas de Curiosity en Marte

30.06.17.- No hay mecánicos en Marte, por lo que la segunda mejor opción para el rover Curiosity de la NASA está en el cuidado al conducir.

Un nuevo algoritmo está ayudando al rover a hacer precisamente eso. El software, denominado control de tracción, ajusta la velocidad de las ruedas de Curiosity dependiendo de las rocas que está subiendo. 

Después de 18 meses de pruebas en el Laboratorio de Propulsión a Chorro de la NASA en Pasadena, California, el software fue cargado en el rover en marzo. La gerencia de la misión del Laboratorio de Ciencia de Marte lo aprobó para su uso el 8 de Junio, después de numerosas pruebas en JPL y múltiples pruebas en Marte.


Incluso antes de 2013, cuando las ruedas comenzaron a mostrar signos de desgaste, los ingenieros de JPL habían estado estudiando cómo reducir los efectos de la rugosa superficie marciana. En terreno nivelado, todas las ruedas del rover giran a la misma velocidad. Pero cuando una rueda va sobre terreno irregular, la inclinación hace que las ruedas empiecen a resbalar.


Este cambio en la tracción es especialmente problemático cuando se recorre sobre rocas puntiagudas e incrustadas. Cuando esto sucede, las ruedas delanteras tiran de las ruedas que se arrastran en las rocas, mientras las ruedas traseras empujan las ruedas delanteras sobre las rocas.


En cualquier caso, la rueda de escalada puede terminar experimentando mayores fuerzas, dando lugar a grietas y pinchazos. Las bandas de rodadura de cada una de las seis ruedas de Curiosity, llamadas grousers, están diseñadas para escalar rocas. Pero los espacios entre ellas están más en riesgo.


"Si se trata de una roca puntiaguda, es más probable que penetre la cubierta entre los grousers", dijo Art Rankin de JPL, jefe del equipo que desarrolló el software de control de tracción. "El desgaste de las ruedas ha sido motivo de preocupación, y aunque estimamos que tienen años de vida todavía por delante, queremos reducir ese desgaste siempre que sea posible para prolongar la vida de las ruedas".


El algoritmo de control de tracción utiliza datos en tiempo real para ajustar la velocidad de cada rueda, reduciendo la presión de las rocas. El software mide los cambios en el sistema de suspensión para determinar los puntos de contacto de cada rueda. A continuación, calcula la velocidad correcta para evitar el deslizamiento, mejorando la tracción del rover.


Durante las pruebas en JPL, las ruedas fueron conducidas sobre un sensor de par de fuerza de 15 centímetros en un terreno plano. Las ruedas delanteras experimentaron una reducción de la carga del 20 por ciento, mientras que las ruedas medias experimentaron una reducción de carga del 11 por ciento, dijo Rankin.


El control de tracción también aborda el problema de los caballitos. De vez en cuando, una rueda que sube continuará levantándose, remontando la superficie real de una roca hasta que esté girando libremente. Eso aumenta las fuerzas sobre las ruedas que todavía están en contacto con el terreno. 

Cuando el algoritmo detecta un caballito, ajusta las velocidades de las otras ruedas hasta que la rueda ascendente vuelve a entrar en contacto con el suelo.
Rankin dijo que el software de control de tracción está actualmente activado de forma predeterminada, pero puede desactivarse cuando sea necesario, como por ejemplo, para la toma de imágenes de ruedas regularmente programadas, cuando el equipo evalúa el desgaste de las ruedas.


Las pruebas se desarrollaron en el JPL antes de ser cargado el software en el rover Curiosity. Image Credit: NAS/JPL-Caltech

sábado, 24 de junio de 2017

El Hubble Observa una Galaxia de Disco Muerta Masiva

22.06.17.- Combinando una 'lente natural' en el espacio con la capacidad del telescopio espacial Hubble, los astrónomos han hecho un descubrimiento sorprendente el primer ejemplo de una galaxia con forma de disco, compacta pero masiva, que gira rápidamente y que dejó de crear estrellas sólo unos pocos miles de millones de años después del Big Bang.


Encontrar una galaxia así en la historia temprana del Universo desafía los conocimientos actuales sobre cómo se forman y evolucionan las galaxias, según los investigadores.
Cuando el Hubble fotografió la galaxia, los astrónomos esperaban ver una bola caótica de estrellas formadas por la colisiones de galaxias. En cambio, vieron pruebas de que las estrellas habían nacido en un disco con forma de tortita.


Esta es la primera prueba observaciones directa de que por lo menos algunas de las llamadas galaxias “muertas” – donde la formación de las estrellas se ha detenido – de algún modo evolucionan desde discos con forma de Vía Láctea en galaxias elípticas gigantes que vemos hoy en día.
Esto es una sorpresa puesto que las galaxias elípticas contienen estrella más viejas, mientras que las galaxias espirales contienen típicamente estrellas azules más jóvenes. Por lo menos algunas de estas galaxias de disco tempranas “muertas” tienen que haber pasado por remodelaciones importantes. No sólo cambiaron su estructura sino también los movimientos de sus estrellas para adoptar la forma de una galaxia elíptica.


“Estoa nueva visión nos obligan a replantearnos el contexto cosmológico completo de cómo las galaxias se agotan pronto y evolucionan a las galaxias elípticas locales”, dijo el autor principal del estudio Sune Toft de la Universidad de Copenhague, Dinamarca. “Quizás hemos estado ciegos al hecho de que las galaxias casi ‘muertas’ podrían ser realmente discos, simplemente porque no teníamos suficiente resolución”.


Estudios anteriores de galaxias muertas distantes han asumido que su estructura es similar a las galaxias elípticas locales en las que evolucionarán. Sin embargo, a través del fenómeno conocido como "lentes gravitacionales", un grupo masivo de primer plano de galaxias actúa como una "lente zoom" natural en el espacio magnificando y estirando imágenes de galaxias de fondo mucho más lejanas. Al unir esta lente natural con el poder de resolución del Hubble, los científicos pudieron ver el centro de la galaxia muerta.


La galaxia remota es tres veces más masiva que la Vía Láctea, pero sólo tiene la mitad del tamaño. Las mediciones de velocidad de rotación realizadas con el Very Large Telescope (VLT) del Observatorio Europeo Austral, ESO, mostraron que la galaxia de disco gira más de dos veces más rápido que la Vía Láctea.



Esta representación artística muestra a la joven muerta, galaxia de disco MACS2129-1, a la derecha, como se vería si se compara con la Vía Láctea, a la izquierda. A pesar de tener tres veces la masa de la Vía Láctea, tiene sólo la mitad de su tamaño. Image Credit: NASA/ESA

sábado, 17 de junio de 2017

Descubren un Planeta más Caliente que la Mayoría de las Estrellas

06.06.17.- Un planeta recién descubierto similar a Júpiter está tan caliente, que está siendo vaporizado por su propia estrella.

Con una temperatura diurna de más de 7.800 grados Fahrenheit (4600 Kelvin), KELT-9b es un planeta que es más caliente que la mayoría de las estrellas. Pero su estrella azul de tipo A, llamada KELT-9, es aún más caliente - de hecho, es probable que el planeta pueda deshacerse a través de la evaporación.

"Este es el planeta gigante de gas más caliente que se haya descubierto", dijo Scott Gaudi, profesor de astronomía en la Universidad Estatal de Ohio en Columbus, quien dirigió un estudio sobre el tema.
KELT-9b es 2,8 veces más masivo que Júpiter, pero sólo la mitad de denso. Los científicos creen que el planeta tiene un radio más pequeño, pero la radiación extrema de su estrella ha causado que la atmósfera del planeta se hinche como un globo.

Debido a que el planeta está anclado por las mareas de su estrella - como la luna a la Tierra - un lado del planeta está siempre orientado hacia la estrella, y un lado está en perpetua oscuridad. Moléculas tales como agua, dióxido de carbono y metano no se pueden formar en el lado diurno porque es bombardeado por la radiación ultravioleta. Las propiedades del lado nocturno siguen siendo misteriosas - las moléculas pueden ser capaces de formarse allí, pero probablemente sólo temporalmente.

“Es un planeta por cualquiera de las definiciones típicas de masa, pero su atmósfera es casi seguramente diferente a cualquier otro planeta que hayamos visto sólo por la temperatura de su lado diurno”, dijo Gaudi.

La estrella KELT-9 tiene sólo 300 millones de años, lo cual es joven para la edad de una estrella. Tiene  más del doble de tamaño que nuestro Sol, y casi el doble de calor. Dado que la atmósfera del planeta se destruye constantemente con altos niveles de radiación ultravioleta, el planeta incluso podría albergar una cola de material planetario evaporado como un cometa.

“KELT-9 irradia tanta radiación ultravioleta que podría evaporar por completo el planeta," dijo Keivan Stassun, profesor de física y astronomía en la Universidad de Vanderbilt, Nashville, Tennessee, que dirigió el estudio con Gaudí. “KELT-9 se hinchará para convertirse en una estrella gigante roja en unos pocos cientos de millones de años”, dijo Stassun. “Las perspectivas a largo plazo para la vida en KELT-9b no se ven bien.”

El planeta también es inusual, ya que orbita perpendicular al eje de rotación de la estrella. Eso sería análogo al planeta en órbita perpendicular al plano de nuestro sistema solar. Un "año" en este planeta es menos de dos días.

KELT-9b no está ni cerca de la habitabilidad, pero Gaudí dijo que hay una buena razón para estudiar mundos que son inhabitables en el extremo.

Un planeta recién descubierto similar a Júpiter está tan caliente, que está siendo vaporizado por su propia estrella.

Un planeta recién descubierto similar a Júpiter está tan caliente, que está siendo vaporizado por su propia estrella. Image Credit: NASA/JPL-Caltech

sábado, 3 de junio de 2017

NASA Presenta los Primeros Resultados Científicos de la Misión Juno

27.05.17.- Los resultados científicos iniciales de la misión Juno de la NASA a Júpiter retratan al mayor de los planetas de nuestro Sistema Solar como un mundo complejo, gigantesco, turbulento… con ciclones del tamaño de la Tierra en los polos, sistemas de tormentas que descienden hacia el corazón del gigante de gas, y un enrome campo magnético e irregular que podría generarse más cerca de la superficie del planeta de lo que se pensaba.


La sonda espacial Juno fue lanzada el 5 de Agosto de 2011, entrando en la órbita de Júpiter el 4 de Julio de 2016. Los hallazgos ahora presentados corresponden al primer sobrevuelo de recolección de datos, que voló a 4.200 kilómetros de los remolinos de nubes de Júpiter el pasado 27 de Agosto.


“Estamos muy contentos de compartir estos primeros descubrimientos, que nos ayudan a comprender mejor lo que hace que Júpiter sea tan fascinante”, dijo Diane Brown, encargada del programa de Juno de la NASA en Washington. "Fue un largo viaje llegar a Júpiter, pero estos primeros resultados ya demuestran que ha valido la pena el viaje.”


"Hay tantas cosas aquí que no esperábamos que hubiéramos tenido que dar un paso atrás y empezar a repensar esto como un Júpiter completamente nuevo", dijo Scott Bolton, investigador principal de Juno en el Instituto de Investigación del Suroeste en San Antonio.


Entre los hallazgos que desafían lo supuesto hasta ahora figuran los proporcionados por la cámara de Juno, JunoCam. Las imágenes muestran que ambos polos de Júpiter están cubiertos por tormentas del tamaño de la Tierra que están densamente agrupadas y rozándose entre sí.


"Estamos perplejos en cuanto a cómo podrían formarse, lo estable que es su configuración y por qué el polo norte de Júpiter no se parece al polo sur", dijo Bolton. "Estamos cuestionando si se trata de un sistema dinámico, y estamos viendo sólo una etapa. Durante el próximo año, vamos a ver si desaparece, o es una configuración estable y estas tormentas están circulando unas alrededor de otras."


Otra sorpresa viene del radiómetro de microondas de Juno (MWR), que muestra la radiación térmica de microondas de la atmósfera de Júpiter, desde la parte superior de las nubes de amoníaco hasta el fondo de su atmósfera. Los datos del MWR indican que las cinturones y otras zonas icónicas de Júpiter son misteriosos, con el cinturón cerca del ecuador penetrando hasta el fondo, mientras que en otras latitudes parecen evolucionar a otras estructuras. Los datos sugieren que el amoníaco es bastante variable y continúa aumentando tan lejos como se puede ver con MWR, que es de unos cientos de kilómetros.  


Antes de la misión Juno, se sabía que Júpiter tenía el campo magnético más intenso en el sistema solar. Las mediciones de la magnetosfera del planeta masivo con el magnetómetro de Juno (MAG), indican que el campo magnético de Júpiter es incluso más fuerte que los modelos esperados, y su forma más irregular. Los datos del MAG indican que el campo magnético excedió en gran medida las expectativas en 7.766 Gauss, aproximadamente 10 veces más fuerte que el campo magnético más fuerte encontrado en la Tierra.


"Juno nos está dando una visión del campo magnético cercano a Júpiter que nunca hemos tenido antes", dijo Jack Connerney, investigador principal adjunto de Juno y el líder de la misión de investigación de campo magnético en el Centro espacial Goddard de la NASA en Greenbelt, Maryland. "Ya vemos que el campo magnético parece voluminoso: es más fuerte en algunos lugares y más débil en otros. Esta distribución desigual sugiere que el campo puede ser generado por la acción de una dinamo más cerca de la superficie, por encima de la capa de hidrógeno metálico. Cada sobrevuelo nos acerca a más a poder determinar dónde y cómo funciona la dinamo de Júpiter".


Juno también está diseñada para estudiar la magnetosfera polar y el origen de las poderosas auroras de Júpiter. Estas emisiones de auroras son causadas por partículas que recogen la energía y golpean las moléculas atmosféricas. Las observaciones iniciales de Juno indican que el proceso parece funcionar de manera diferente en Júpiter que en la Tierra.
Juno está en una órbita polar alrededor de Júpiter, y la mayoría de cada órbita tiene lugar lejos del gigante del gas. 

Pero, una vez cada 53 días, su trayectoria se aproxima a Júpiter desde arriba de su polo norte, donde comienza un tránsito de dos horas (de polo a polo) volando de norte a sur con sus ocho instrumentos científicos recolectando datos e imágenes con su cámara JunoCam. La descarga de seis megabytes de datos recogidos durante el tránsito puede llevar día y medio.



El polo sur de Júpiter, observado por la nave espacial Juno desde una distancia de 52000 kilómetros. Las estructuras ovales son ciclones de hasta 1000 km de diámetro.  

Image Credit: NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

sábado, 27 de mayo de 2017

NASA Presenta los Primeros Resultados Científicos de la Misión Juno

27.05.17.- Los resultados científicos iniciales de la misión Juno de la NASA a Júpiter retratan al mayor de los planetas de nuestro Sistema Solar como un mundo complejo, gigantesco, turbulento… con ciclones del tamaño de la Tierra en los polos, sistemas de tormentas que descienden hacia el corazón del gigante de gas, y un enrome campo magnético e irregular que podría generarse más cerca de la superficie del planeta de lo que se pensaba.


La sonda espacial Juno fue lanzada el 5 de Agosto de 2011, entrando en la órbita de Júpiter el 4 de Julio de 2016. Los hallazgos ahora presentados corresponden al primer sobrevuelo de recolección de datos, que voló a 4.200 kilómetros de los remolinos de nubes de Júpiter el pasado 27 de Agosto.


“Estamos muy contentos de compartir estos primeros descubrimientos, que nos ayudan a comprender mejor lo que hace que Júpiter sea tan fascinante”, dijo Diane Brown, encargada del programa de Juno de la NASA en Washington. "Fue un largo viaje llegar a Júpiter, pero estos primeros resultados ya demuestran que ha valido la pena el viaje.”


"Hay tantas cosas aquí que no esperábamos que hubiéramos tenido que dar un paso atrás y empezar a repensar esto como un Júpiter completamente nuevo", dijo Scott Bolton, investigador principal de Juno en el Instituto de Investigación del Suroeste en San Antonio.


Entre los hallazgos que desafían lo supuesto hasta ahora figuran los proporcionados por la cámara de Juno, JunoCam. Las imágenes muestran que ambos polos de Júpiter están cubiertos por tormentas del tamaño de la Tierra que están densamente agrupadas y rozándose entre sí.


"Estamos perplejos en cuanto a cómo podrían formarse, lo estable que es su configuración y por qué el polo norte de Júpiter no se parece al polo sur", dijo Bolton. "Estamos cuestionando si se trata de un sistema dinámico, y estamos viendo sólo una etapa. Durante el próximo año, vamos a ver si desaparece, o es una configuración estable y estas tormentas están circulando unas alrededor de otras."


Otra sorpresa viene del radiómetro de microondas de Juno (MWR), que muestra la radiación térmica de microondas de la atmósfera de Júpiter, desde la parte superior de las nubes de amoníaco hasta el fondo de su atmósfera. Los datos del MWR indican que las cinturones y otras zonas icónicas de Júpiter son misteriosos, con el cinturón cerca del ecuador penetrando hasta el fondo, mientras que en otras latitudes parecen evolucionar a otras estructuras. Los datos sugieren que el amoníaco es bastante variable y continúa aumentando tan lejos como se puede ver con MWR, que es de unos cientos de kilómetros.  


Antes de la misión Juno, se sabía que Júpiter tenía el campo magnético más intenso en el sistema solar. Las mediciones de la magnetosfera del planeta masivo con el magnetómetro de Juno (MAG), indican que el campo magnético de Júpiter es incluso más fuerte que los modelos esperados, y su forma más irregular. Los datos del MAG indican que el campo magnético excedió en gran medida las expectativas en 7.766 Gauss, aproximadamente 10 veces más fuerte que el campo magnético más fuerte encontrado en la Tierra.


"Juno nos está dando una visión del campo magnético cercano a Júpiter que nunca hemos tenido antes", dijo Jack Connerney, investigador principal adjunto de Juno y el líder de la misión de investigación de campo magnético en el Centro espacial Goddard de la NASA en Greenbelt, Maryland. "Ya vemos que el campo magnético parece voluminoso: es más fuerte en algunos lugares y más débil en otros. Esta distribución desigual sugiere que el campo puede ser generado por la acción de una dinamo más cerca de la superficie, por encima de la capa de hidrógeno metálico. Cada sobrevuelo nos acerca a más a poder determinar dónde y cómo funciona la dinamo de Júpiter".


Juno también está diseñada para estudiar la magnetosfera polar y el origen de las poderosas auroras de Júpiter. Estas emisiones de auroras son causadas por partículas que recogen la energía y golpean las moléculas atmosféricas. Las observaciones iniciales de Juno indican que el proceso parece funcionar de manera diferente en Júpiter que en la Tierra.


Juno está en una órbita polar alrededor de Júpiter, y la mayoría de cada órbita tiene lugar lejos del gigante del gas. Pero, una vez cada 53 días, su trayectoria se aproxima a Júpiter desde arriba de su polo norte, donde comienza un tránsito de dos horas (de polo a polo) volando de norte a sur con sus ocho instrumentos científicos recolectando datos e imágenes con su cámara JunoCam. La descarga de seis megabytes de datos recogidos durante el tránsito puede llevar día y medio.



El polo sur de Júpiter, observado por la nave espacial Juno desde una distancia de 52000 kilómetros. Las estructuras ovales son ciclones de hasta 1000 km de diámetro. Image Credit: NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

sábado, 20 de mayo de 2017

Detectan una Atmósfera Inesperadamente Primitiva Rodeando a un “Neptuno Cálido”

13.05.17.- Un estudio que combina observaciones de los telescopios espaciales Hubble y Spitzer de la NAA ha revelado que el lejano planeta HAT-P-26b posee una atmósfera primitiva compuesta casi por competo de hidrógeno y helio. Situado a 437 años luz de distancia, HAT-P-26b orbita una estrellas que es el doble de vieja que el Sol.


El análisis es uno de los estudios más detallados hasta la fecha de un “Neptuno cálido,” un planeta que tiene el tamaño de Neptuno y se encuentra cerca de su estrella. Los investigadores determinaron que la atmósfera de HAT-P-26b está relativamente libre de nubes y posee una fuerte indicación de agua, aunque el planeta no sea un mundo de agua. Se trata de la mejor medición hasta la fecha de agua en un exoplaneta de este tamaño.


El descubrimiento de una atmósfera con esta composición en este exoplaneta tiene consecuencias sobre lo que piensan los científicos acerca del nacimiento y desarrollo de los sistemas planetarios. Comparado con Neptuno y Urano, los planetas de nuestro Sistema Solar con una masa similar, HAT-P-26b probablemente se formó más cerca de su estrella nodriza o más tarde en el desarrollo de su sistema planetario, o ambos.


“Los astrónomos han comenzado a investigar las atmósferas de estos distantes planetas con la masa de Neptuno, y casi de inmediato, hemos encontrado un ejemplo que va en contra de la tendencia de nuestro sistema solar”, dijo Hannah Wakeford, investigador postdoctoral en el Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland, y autor principal del estudio publicado el 12 Mayo de 2017 en la revista Science. “Este tipo de resultado inesperado es la razón por que realmente me gusta explorar las atmósferas de planetas alienígenas.”


Para estudiar la atmósfera de HAT-P-26b, los investigadores utilizaron datos de tránsitos - cuando el planeta pasa por delante de su estrella anfitriona. Durante un tránsito, una fracción de la luz estelar se filtra a través de la atmósfera del planeta, que absorbe algunas longitudes de onda de la luz, pero no otras. Observando cómo las firmas de luz de las estrellas cambian como resultado de este filtrado, los investigadores pueden trabajar hacia atrás para averiguar la composición química de la atmósfera.
En este caso, el equipo agrupó los datos de cuatro tránsitos medidos por el Hubble y dos vistos por Spitzer. Juntas, estas observaciones cubrieron una amplia gama de longitudes de onda de la luz amarilla a través de la región del infrarrojo cercano.


Como el estudio proporcionó una medida precisa del agua, los investigadores han podido utilizarla para estimar lo rico que es el planeta en elementos “metálicos”, es decir, más pesados que el hidrógeno y el helio, lo que a su vez indica cómo se formó el planeta.


Para comparar los planetas por sus metalicidades, los científicos utilizan el Sol como un punto de referencia, casi como describir cuánto bebidas tienen cafeína comparándolas con una taza de café. Júpiter tiene una metalicidad alrededor de 2 a 5 veces la del Sol. La de Saturno es aproximadamente 10 veces más que la del Sol. Estos valores relativamente bajos significan que los dos gigantes de gas están compuestos casi por completo de hidrógeno y helio.


Los gigantes de hielo Neptuno y Urano son más pequeños que los gigantes de gas pero más ricos en elementos más pesados, con metalicidades de alrededor de 100 veces la del Sol. Por lo tanto, para los cuatro planetas exteriores de nuestro sistema solar, la tendencia es que las metalicidades son más bajas para los planetas más grandes.


Los científicos creen que esto sucedió porque, cuando el sistema solar fue tomando forma, Neptuno y Urano se formaron en una región hacia las afueras de un enorme disco de polvo, gas y escombros que se arremolinaba alrededor del sol inmaduro. Resumiendo el complicado proceso de formación planetaria en pocas palabras: Neptuno y Urano habrían sido bombardeados con un montón de escombros helados que eran ricos en elementos más pesados. Júpiter y Saturno, que se formaron en una parte más caliente del disco, se habrían encontrado con menos de los restos helados.
Dos planetas más allá de nuestro sistema solar también se ajustan a esta tendencia. Uno de ellos es el planeta con la masa de Neptuno HAT-P-11b. El otro es WASP-43b, un gigante de gas dos veces más masivo que Júpiter.


Pero Wakeford y sus colegas descubrieron que HAT-P-26b rompe esa tendencia. Determinaron que su metalicidad es de sólo 4,8 veces la del Sol, mucho más cercano al valor de Júpiter que de Neptuno.

“Este análisis demuestra que hay mucha más diversidad en las atmósferas de estos exoplanetas de lo que esperábamos, lo que nos da una idea de cómo los planetas pueden formarse y evolucionar de manera diferente en nuestro sistema solar”, dijo David K. Sing de la Universidad de Exeter y segundo autor del artículo.



La atmósfera de un lejano “Neptuno cálido” HAT-P-26b, ilustrado aquí, es inesperadamente primitiva, compuesta principalmente por hidrógeno y helio. Image Credit: NASA/GSFC

sábado, 13 de mayo de 2017

La Fusión de Galaxias Tiene Agujeros Negros Encubiertos

10.05.17.- Los agujeros negros tienen mala fama en la cultura popular porque tragan todo lo que hay a su alrededor. En realidad, estrellas, gas y polvo pueden estar en órbita alrededor de los agujeros negros durante largos periodos de tiempo, hasta que una perturbación grande empuje el material hacia el interior.


Una fusión de dos galaxias es una perturbación de este tipo. Cuando las galaxias se combinan y sus agujeros negros centrales se aproximan uno al otro, el gas y el polvo de los alrededores son empujados hacia sus respectivos agujeros negros. Una enorme cantidad de radiación de alta energía es emitida cuando el material se precipita en espiral rápidamente hacia el agujero negro hambriento, que se convierte en lo que los astrónomos llaman un núcleo galáctico activo (AGN).


Un nuevo estudio utilizando el telescopio NuSTAR de la NASA demuestra que en las fases finales de la fusión de galaxias, se ha precipitado tan gran cantidad de gas y de polvo hacia el agujero negro que el AGN, de enorme brillo, queda oculto por ellos. El efecto combinado de la gravedad de las dos galaxias frena las velocidades de giro del gas y el polvo y esta pérdida de energía hace que el material se precipite hacia el agujero negro.


“Cuanto más avanzada es la fusión, más envuelto será el AGN”, dijo Claudio Ricci, autor principal del estudio. “Las galaxias que se hallan en un proceso de unión muy avanzado se encuentra completamente cubiertas por un envoltorio de gas y polvo”.


Ricci y sus colegas observaron las emisiones de rayos X de 52 galaxias. Aproximadamente, la mitad de ellas estaban en la fase final de una fusión. Además de la información del NuSTAR, los investigadores utilizaron la data de Swift y Chandra de la NASA, así como el XMM-Newton de ESA.





Comparaciónnd el crecimiento de un agujero negro supermasivo en dos tipos diferentes de galaxias. Image Credit: NASA/National Astronomical Observatory of Japan