domingo, 27 de abril de 2008

La Luna y la cola magnética de la Tierra

Investigadores patrocinados por la NASA se han dado cuenta de que cosas extrañas podrían estar sucediendo en la Luna llena cuando ésta recibe los golpes de la cola magnética de la Tierra.

Abril 17, 2008: Contemple la Luna llena. Antiguos cráteres y mares de lava congelada yacen inmóviles bajo un cielo de profunda tranquilidad, sin aire. Es un mundo en cámara lenta, donde incluso una pisada humana puede durar millones de años. Parece que allí nunca sucediera nada.
¿Correcto?
Equivocado. Científicos patrocinados por la NASA se han dado cuenta de que algo sucede cada mes cuando la Luna recibe un latigazo de la cola magnética de la Tierra.


"Arriba: La Luna llena dentro de la cola magnética de la Tierra, marzo de 2008.

Sí, la Tierra tiene una cola magnética. Es una extensión del mismo campo magnético que nos es familiar y que experimentamos cuando utilizamos una brújula de explorador. Todo nuestro planeta está envuelto en una burbuja de magnetismo, la cual se origina desde una dínamo fundida en el núcleo de la Tierra. En el espacio, el viento solar presiona contra esta burbuja y la estira, creando de este modo una larga "cola magnética" en la dirección en la cual se mueve el viento: diagrama.
Cualquiera puede decir cuándo la Luna se encuentra dentro de la cola magnética. Simplemente observe: "Si la Luna está llena, se encuentra dentro de la cola magnética", dice Stubbs. "La Luna entra en la cola magnética tres días antes de estar llena y le toma aproximadamente seis días cruzar y salir por el otro lado".
Es durante esos seis días que pueden suceder cosas extrañas.La cola magnética de la Tierra se extiende mucho más allá de la órbita de la Luna y, una vez al mes, la Luna orbita a través de ella", dice Tim Stubbs, un científico de la Universidad de Maryland que trabaja en el Centro Goddard para Vuelos Espaciales (Goddard Space Flight Center, en idioma inglés). "Esto puede tener consecuencias que van desde 'tormentas de polvo' lunares hasta descargas electrostáticas".

Durante el cruce, la Luna entra en contacto con una gigantesca "sábana de plasma" de partículas cargadas calientes, atrapadas en la cola. Las más livianas y móviles de estas partículas, los electrones, salpican la superficie de la Luna y le dan carga negativa.



Derecha: La órbita de la Luna cruza la cola magnética de la Tierra. [Imagen ampliada]



En el lado de la Luna donde es de día, la luz solar contrarresta, hasta cierto grado, este efecto: los fotones UV devuelven los electrones desprendiéndolos de la superficie, manteniendo la acumulación de carga en niveles relativamente bajos. Pero en el lado donde es de noche, en la fría superficie lunar, los electrones se acumulan y los voltajes pueden alcanzar cientos o miles de voltios.
Al caminar a través del polvoriento y cargado terreno lunar, los astronautas se pueden encontrar 'crepitando' por la electricidad como un calcetín recién sacado de una secadora de ropa. Tocar a otro astronauta, rozar una perilla de puerta o una pieza electrónica sensible —cualquiera de estas simples acciones podría producir un molesto ¡zas!. "Se recomienda una adecuada conexión a tierra", aconseja Stubbs.

El suelo, mientras tanto, puede saltar hacia el cielo. Existe evidencia convincente (por ejemplo, ver la imagen de Surveyor 7, abajo) de que las finas partículas de polvo de la Luna, cuando se encuentran lo suficientemente cargadas, flotan arriba de la superficie lunar. Esto podría crear una temporal atmósfera nocturna de polvo listo para tiznar de color negro los trajes espaciales, atascar la maquinaria, rayar placas (el polvo lunar es muy abrasivo) y, en general, hacer la vida difícil para los astronautas.
Y lo que resulta aun más extraño: el polvo lunar mismo se puede acumular y formar una especie de viento diáfano. Provocado por diferencias en la acumulación global de carga, el polvo flotante volaría naturalmente desde el lado donde es de noche (de carga fuertemente negativa) hacia el lado donde es de día (de carga débilmente negativa). Este efecto de "tormenta de polvo" sería más fuerte en el terminador de la Luna, que es la línea que divide el día y la noche.
Stubbs advierte que mucho de esto es pura especulación. Nadie puede decir con certeza qué sucede en la Luna cuando la cola magnética golpea ya que nadie ha estado allí en el momento indicado. "Los astronautas del Apollo nunca descendieron a la superficie lunar en época de Luna llena y nunca experimentaron la cola magnética".
La mejor evidencia directa proviene de la nave espacial Lunar Prospector, de la NASA, la cual orbitó la Luna en 1998-99 y monitoreó muchos cruces de la cola magnética. Durante algunos cruces, la nave espacial detectó grandes cambios en el voltaje del lado nocturno de la Luna, el cual saltó "típicamente desde -200 V a -1000 V", dice Jasper Halekas, de la Universidad de California, Berkeley, quien ha estado estudiando los datos de una década de antigüedad.

Arriba: En 1968, en muchas ocasiones, el explorador lunar Surveyor 7, de la NASA, fotografió un extraño "resplandor en el horizonte" después del anochecer. Ahora, los investigadores creen que dicho resplandor es luz dispersada por el polvo lunar eléctricamente cargado, que se encuentra flotando justo por encima de la superficie lunar.

"Es importante destacar", dice Halekas, "que la sábana de plasma (de donde provienen todos los electrones) es una estructura muy dinámica. La sábana de plasma está en un constante estado de movimiento, agitándose hacia arriba y hacia abajo todo el tiempo. De modo que mientras la Luna orbita a través de la cola magnética, la sábana de plasma la puede barrer una y otra vez. Dependiendo de cuán dinámicas son las cosas, podemos encontrar la sábana de plasma muchas veces durante un único paso a través de la cola magnética (los encuentros duran desde minutos hasta horas e incluso días)".
"Como resultado, es posible imaginar lo dinámico que es el medio de las cargas en la Luna. La Luna puede estar allí, descansando en una región tranquila de la cola magnética y entonces, de repente, todo este plasma caliente pasa barriendo y provocando que el potencial del lado nocturno se dispare a un kilovoltio. Luego disminuye nuevamente, con igual velocidad".
La montaña rusa de carga estaría en su parte más vertiginosa durante tormentas solares y geomagnéticas. "Ese es un momento muy dinámico para la sábana de plasma y necesitamos estudiar qué ocurre entonces", relata.
¿Qué ocurre entonces? Los astronautas de la siguiente generación van a averiguarlo. La NASA regresará a la Luna en las próximas décadas y planea establecer un puesto de avanzada para la exploración lunar a largo plazo. Los astronautas también explorarán la cola magnética.

























martes, 15 de abril de 2008

Trucos para detectar agua en la Luna

Próximamente, el satélite Orbitador de Reconocimiento Lunar (LRO) sobrevolará el polo sur de la Luna en busca de agua escondida en el fondo de oscuros cráteres. Para tan difícil tarea, la sonda tiene algunos trucos bajo la manga.

Marzo 27, 2008: Montañas de color gris brillante, salpicadas de cráteres, más altas que el Monte McKinley. Cráteres abismales que podrían engullir varias veces al Gran Cañón.
Algunos mapas de radar del polo sur de la Luna, obtenidos recientemente, revelaron un paisaje absolutamente irregular, al cual los astronautas podrían algún día llamar hogar. Pero, lamentablemente, tales imágenes de radar no aportaron información nueva acerca de lo que podría facilitar mucho la vida en el polo de la Luna: el agua congelada.

Arriba: El polo sur de la Luna, visto desde la Tierra: más información.

Para tener nuevas evidencias sobre la supuesta existencia de hielo en los polos lunares tendremos que esperar al envío de una sonda robot llamada Orbitador de Reconocimiento Lunar (Lunar Reconnaissance Orbiter o "LRO", en idioma inglés). Actualmente, los ingenieros del Centro Goddard para Vuelos Espaciales de la NASA se encuentran recibiendo los nuevos instrumentos científicos, entregados personalmente, y los están integrando al satélite, cuyo lanzamiento está programado para finales de este año.
La Visión para la Exploración Espacial de la agencia ha solicitado el envío de seres humanos de regreso a la Luna para el año 2020 con el fin de establecer posteriormente un puesto lunar habitado por personas. El LRO es la primera de una serie de sondas robot que recolectarán datos decisivos sobre la topografía lunar, su ambiente de radiación, las temperaturas y la composición química que los científicos de la NASA necesitan para planear las misiones tripuladas.


Durante el año que permanecerá el LRO en órbita alrededor de la Luna, la sonda otorgará a los científicos datos sin precedentes para poder saber si el hielo lunar yace en algún lugar del terreno de nuestro satélite natural.
La mayor parte de la Luna está completamente seca. La temperatura de la superficie puede exceder los 100 °C durante el día lunar y la gravedad allí es demasiado débil como para impedir que el agua que se evapora salga flotando hacia el espacio. El agua congelada, si es que existe, yace solamente en el fondo de abismales cráteres que miden 4 km (2,5 millas) de profundidad. Algunos lugares dentro de tales cráteres se encuentran permanentemente en sombra y allí las temperaturas descienden hasta alcanzar los -240 °C (-400 °F). Esto es lo suficientemente frío como para mantener el agua en estado de congelamiento, incluso en la Luna.
El hecho de tener hielo cercano para extraer proporcionaría mucho más que una fuente de agua para beber. Los pioneros lunares podrían utilizar el agua para hacer crecer plantas y luego alimentarse de ellas. También, dividiendo las moléculas de agua con electricidad que provenga de paneles solares se podría producir oxígeno para reponer el aire de los puestos lunares y sería posible obtener gas hidrógeno, un excelente combustible para cohetes que podría servir para enviar el vehículo de retorno de los astronautas. (El combustible de las turbinas principales del Transbordador Espacial es hidrógeno líquido).


Tentadoras pistas obtenidas por orbitadores robot anteriores sugieren que estos cráteres podrían albergar hasta un kilómetro cúbico de agua. Las misiones Lunar Prospector (Prospector Lunar) y Clementine (Clementina), de los años 90, hallaron evidencia indirecta de agua o de algún otro compuesto hidrogenado en los cráteres de los polos lunares. Lamentablemente, los datos dan lugar a la incertidumbre.



Derecha: Este mapa del polo sur de la Luna, trazado por el orbitador Lunar Prospector, muestra en color azul las zonas donde el agua, o algún otro compuesto rico en hidrógeno, podría localizarse: más información.

"La tarea de la misión LRO es acabar con tal incertidumbre", dice Alan Stern, jefe del Directorio de Misiones Científicas, en las oficinas centrales de la NASA, en Washington, D.C.
Pero confirmar la existencia de hielo desde un punto en órbita a 50 km sobre la superficie puede ser algo complicado. Cuatro de los instrumentos científicos del LRO buscarán diferentes pistas que indiquen la presencia de hielo. Si los cuatro instrumentos apuntan hacia el mismo lugar, nos convenceríamos de que efectivamente existe hielo, dice Richard Vondrak, de la NASA, científico del proyecto LRO. "Yo espero que, de una vez por todas, el LRO realmente responda la pregunta sobre si hay hielo de agua en el polo", relata Vondrak.
La manera más fácil de confirmar si existe hielo de agua en aquellos profundos cráteres sería simplemente ir y mirar. Pero, sin la luz difusa de un cielo azul y de nubes blancas, las sombras en la Luna son mucho más nítidas y más oscuras que las sombras aquí en la Tierra.
Para mirar hacia el interior de estos cráteres negros como la tinta, el LRO usará una fuente de luz distinta: la luz de las estrellas. Uno de los instrumentos a bordo del LRO puede, de hecho, "ver" la luz de las estrellas reflejada por la superficie lunar. Esto es porque dicho instrumento, llamado Proyecto de Cartografía Lyman-Alfa (Lyman-Alpha Mapping Project o LAMP, en idioma inglés), detecta luz ultravioleta. Las estrellas distantes están relativamente cerca en un cierto rango de longitudes de onda ultravioletas y, además, el hielo de agua crea una marca característica en el espectro de la luz ultravioleta reflejada, una "huella digital" espectral que podría ayudar a confirmar la presencia de agua.





Arriba: Concepto artístico del LRO en acción: más información

Asimismo, un rayo láser, ubicado a bordo del LRO, iluminará brevemente algunos puntos sobre la superficie lunar. El propósito de estos pulsos de láser es trazar mapas del contorno de la superficie lunar, pero el sensor, denominado Altímetro Láser del Orbitador Lunar (Lunar Orbiter Laser Altimeter o LOLA, en idioma inglés), también medirá el brillo de la luz reflejada del láser. Si las reflexiones de los cráteres permanentemente en tinieblas son levemente más brillantes que en otros lugares, podría significar la presencia de cristales de hielo.
Los cristales de hielo en el suelo lunar tendrían otro efecto interesante: absorberían neutrones.
La Luna recibe constantemente rayos cósmicos de alta energía que provienen del espacio profundo y, cuando estas partículas golpean la superficie lunar, crean neutrones que son enviados de regreso al espacio. El LRO llevará a bordo un detector de neutrones llamado Detector de Neutrones en Exploración Lunar (Lunar Exploration Neutron Detector o LEND, en idioma inglés). Si el LRO sobrevuela una vasta extensión de terreno que contenga hielo escondido en cráteres profundos, el LEND medirá una disminución en la cantidad de neutrones que irradian desde abajo.
Como confirmación final, el LRO llevará consigo un tipo de termómetro llamado Diviner. Este instrumento trazará mapas de las amplias variaciones de temperatura en la superficie lunar, incluyendo los cráteres que se encuentran permanentemente oscuros. Aun si los otros tres instrumentos sugieren que hay hielo en un cráter, el Diviner deberá mostrar, también, que allí abajo la temperatura es lo suficientemente fría como para evitar que el hielo se evapore.
Si el LRO encuentra hielo en aquellas frías y oscuras profundidades, éste podría ser el hallazgo más espectacular registrado hasta la fecha en el ya de por sí imponente paisaje lunar.




martes, 8 de abril de 2008

Regresa el ciclo solar anterior

Hace tres meses comenzó un nuevo ciclo solar. Sin embargo, esta semana, el Sol sorprendió a sus expectadores con tres grandes manchas del ciclo solar previo. Aunque esto resulta bastante extraño, es perfectamente normal.


Marzo 28, 2008: Ciclo solar 23, ¿cómo te podemos extrañar si no te vas?
Apenas tres meses después de que los pronosticadores anunciaran el comienzo del nuevo ciclo solar 24, el ciclo solar 23 regresó. (De hecho, nunca se fue. Continúe leyendo.)
"Esta semana, aparecieron tres grandes manchas solares y todas ellas pertenecen al ciclo anterior", dice el físico solar de la NASA, David Hathaway. "Sabemos esto debido a su polaridad magnética". El 28 de marzo, el Observatorio Solar y Heliosférico (Solar and Heliospheric Observatory, SOHO, en idioma inglés) confeccionó este mapa magnético del Sol:


Este mapa muestra los polos norte y sur magnéticos de las tres manchas. Todas están orientadas de acuerdo con los patrones del ciclo solar 23. Las manchas del ciclo 24 estarían invertidas.
¿Qué está sucediendo? Hathaway explica: "Tenemos dos ciclos solares en progreso al mismo tiempo. El ciclo solar 24 ha comenzado (la primera mancha del nuevo ciclo apareció en enero de 2008), pero el ciclo solar 23 aún no ha terminado".
Tan extraño como suena, esto es perfectamente normal. Cerca del momento en el cual se produce el mínimo solar (o sea, ahora), manchas del ciclo anterior y manchas del actual ciclo se entremezclan frecuentemente. Finalmente, el ciclo 23 se irá atenuando hasta desaparecer dejando, de ese modo, el camino completamente libre al ciclo solar 24. Pero esto no sucederá todavía.
Mientras tanto, el 25 de marzo, la mancha 989, la más pequeña de las tres manchas, desató una llamarada solar de clase M2. Las llamaradas se miden en una "escala de Richter" y van desde clase A (insignificantes) hasta clase X (poderosas). Las llamaradas de clase M son de intensidad intermedia. Esta llamarada lanzó al espacio una eyección de masa coronal o "CME", por su sigla en idioma inglés (película), pero la nube de mil millones de toneladas no alcanzó a la Tierra.
Cuando la CME aún estaba abriéndose paso a través de la atmósfera del Sol, el radioastrónomo aficionado Thomas Ashcraft escuchó "un sonido fuerte" que salía de los altavoces de su receptor de onda corta de 21 MHz, en Nuevo México: escuche. Era una ráfaga solar de radio Tipo II generada por ondas de choque en el borde anterior de la CME. A mil seiscientos kilómetros de distancia (mil millas), en Virginia, David Thomas grabó las mismas emisiones en un registrador gráfico que conectó a su equipo de radioaficionado a 20 MHz: observe. "Qué sorpresa tan agradable", dice Thomas.
Podríamos tener más actividad de este tipo en los próximos 7 a 10 días. Eso es aproximadamente el tiempo que tardarán las manchas solares en cruzar la cara del Sol. La rotación del Sol está dirigiendo las manchas hacia la Tierra, lo cual significa que la siguiente CME, si es que se produce alguna, podría no errar. Los azotes de las CME no causan daño físico a la Tierra pero pueden provocar auroras boreales, problemas técnicos en los sistemas de satélites y, en casos extremos, apagones.
La importancia real de estas manchas es lo que dicen acerca del ciclo solar, comenta Hathaway. "El ciclo solar 24 ha comenzado, pero no pasaremos por el mínimo solar hasta que la cantidad de manchas del ciclo 24 aumente por encima de la cantidad decreciente de manchas del ciclo 23". Tomando como base esta última serie de "vieja" actividad, él piensa que probablemente el siguiente máximo solar no llegará hasta 2012.