sábado, 24 de junio de 2017

El Hubble Observa una Galaxia de Disco Muerta Masiva

22.06.17.- Combinando una 'lente natural' en el espacio con la capacidad del telescopio espacial Hubble, los astrónomos han hecho un descubrimiento sorprendente el primer ejemplo de una galaxia con forma de disco, compacta pero masiva, que gira rápidamente y que dejó de crear estrellas sólo unos pocos miles de millones de años después del Big Bang.


Encontrar una galaxia así en la historia temprana del Universo desafía los conocimientos actuales sobre cómo se forman y evolucionan las galaxias, según los investigadores.
Cuando el Hubble fotografió la galaxia, los astrónomos esperaban ver una bola caótica de estrellas formadas por la colisiones de galaxias. En cambio, vieron pruebas de que las estrellas habían nacido en un disco con forma de tortita.


Esta es la primera prueba observaciones directa de que por lo menos algunas de las llamadas galaxias “muertas” – donde la formación de las estrellas se ha detenido – de algún modo evolucionan desde discos con forma de Vía Láctea en galaxias elípticas gigantes que vemos hoy en día.
Esto es una sorpresa puesto que las galaxias elípticas contienen estrella más viejas, mientras que las galaxias espirales contienen típicamente estrellas azules más jóvenes. Por lo menos algunas de estas galaxias de disco tempranas “muertas” tienen que haber pasado por remodelaciones importantes. No sólo cambiaron su estructura sino también los movimientos de sus estrellas para adoptar la forma de una galaxia elíptica.


“Estoa nueva visión nos obligan a replantearnos el contexto cosmológico completo de cómo las galaxias se agotan pronto y evolucionan a las galaxias elípticas locales”, dijo el autor principal del estudio Sune Toft de la Universidad de Copenhague, Dinamarca. “Quizás hemos estado ciegos al hecho de que las galaxias casi ‘muertas’ podrían ser realmente discos, simplemente porque no teníamos suficiente resolución”.


Estudios anteriores de galaxias muertas distantes han asumido que su estructura es similar a las galaxias elípticas locales en las que evolucionarán. Sin embargo, a través del fenómeno conocido como "lentes gravitacionales", un grupo masivo de primer plano de galaxias actúa como una "lente zoom" natural en el espacio magnificando y estirando imágenes de galaxias de fondo mucho más lejanas. Al unir esta lente natural con el poder de resolución del Hubble, los científicos pudieron ver el centro de la galaxia muerta.


La galaxia remota es tres veces más masiva que la Vía Láctea, pero sólo tiene la mitad del tamaño. Las mediciones de velocidad de rotación realizadas con el Very Large Telescope (VLT) del Observatorio Europeo Austral, ESO, mostraron que la galaxia de disco gira más de dos veces más rápido que la Vía Láctea.



Esta representación artística muestra a la joven muerta, galaxia de disco MACS2129-1, a la derecha, como se vería si se compara con la Vía Láctea, a la izquierda. A pesar de tener tres veces la masa de la Vía Láctea, tiene sólo la mitad de su tamaño. Image Credit: NASA/ESA

sábado, 17 de junio de 2017

Descubren un Planeta más Caliente que la Mayoría de las Estrellas

06.06.17.- Un planeta recién descubierto similar a Júpiter está tan caliente, que está siendo vaporizado por su propia estrella.

Con una temperatura diurna de más de 7.800 grados Fahrenheit (4600 Kelvin), KELT-9b es un planeta que es más caliente que la mayoría de las estrellas. Pero su estrella azul de tipo A, llamada KELT-9, es aún más caliente - de hecho, es probable que el planeta pueda deshacerse a través de la evaporación.

"Este es el planeta gigante de gas más caliente que se haya descubierto", dijo Scott Gaudi, profesor de astronomía en la Universidad Estatal de Ohio en Columbus, quien dirigió un estudio sobre el tema.
KELT-9b es 2,8 veces más masivo que Júpiter, pero sólo la mitad de denso. Los científicos creen que el planeta tiene un radio más pequeño, pero la radiación extrema de su estrella ha causado que la atmósfera del planeta se hinche como un globo.

Debido a que el planeta está anclado por las mareas de su estrella - como la luna a la Tierra - un lado del planeta está siempre orientado hacia la estrella, y un lado está en perpetua oscuridad. Moléculas tales como agua, dióxido de carbono y metano no se pueden formar en el lado diurno porque es bombardeado por la radiación ultravioleta. Las propiedades del lado nocturno siguen siendo misteriosas - las moléculas pueden ser capaces de formarse allí, pero probablemente sólo temporalmente.

“Es un planeta por cualquiera de las definiciones típicas de masa, pero su atmósfera es casi seguramente diferente a cualquier otro planeta que hayamos visto sólo por la temperatura de su lado diurno”, dijo Gaudi.

La estrella KELT-9 tiene sólo 300 millones de años, lo cual es joven para la edad de una estrella. Tiene  más del doble de tamaño que nuestro Sol, y casi el doble de calor. Dado que la atmósfera del planeta se destruye constantemente con altos niveles de radiación ultravioleta, el planeta incluso podría albergar una cola de material planetario evaporado como un cometa.

“KELT-9 irradia tanta radiación ultravioleta que podría evaporar por completo el planeta," dijo Keivan Stassun, profesor de física y astronomía en la Universidad de Vanderbilt, Nashville, Tennessee, que dirigió el estudio con Gaudí. “KELT-9 se hinchará para convertirse en una estrella gigante roja en unos pocos cientos de millones de años”, dijo Stassun. “Las perspectivas a largo plazo para la vida en KELT-9b no se ven bien.”

El planeta también es inusual, ya que orbita perpendicular al eje de rotación de la estrella. Eso sería análogo al planeta en órbita perpendicular al plano de nuestro sistema solar. Un "año" en este planeta es menos de dos días.

KELT-9b no está ni cerca de la habitabilidad, pero Gaudí dijo que hay una buena razón para estudiar mundos que son inhabitables en el extremo.

Un planeta recién descubierto similar a Júpiter está tan caliente, que está siendo vaporizado por su propia estrella.

Un planeta recién descubierto similar a Júpiter está tan caliente, que está siendo vaporizado por su propia estrella. Image Credit: NASA/JPL-Caltech

sábado, 3 de junio de 2017

NASA Presenta los Primeros Resultados Científicos de la Misión Juno

27.05.17.- Los resultados científicos iniciales de la misión Juno de la NASA a Júpiter retratan al mayor de los planetas de nuestro Sistema Solar como un mundo complejo, gigantesco, turbulento… con ciclones del tamaño de la Tierra en los polos, sistemas de tormentas que descienden hacia el corazón del gigante de gas, y un enrome campo magnético e irregular que podría generarse más cerca de la superficie del planeta de lo que se pensaba.


La sonda espacial Juno fue lanzada el 5 de Agosto de 2011, entrando en la órbita de Júpiter el 4 de Julio de 2016. Los hallazgos ahora presentados corresponden al primer sobrevuelo de recolección de datos, que voló a 4.200 kilómetros de los remolinos de nubes de Júpiter el pasado 27 de Agosto.


“Estamos muy contentos de compartir estos primeros descubrimientos, que nos ayudan a comprender mejor lo que hace que Júpiter sea tan fascinante”, dijo Diane Brown, encargada del programa de Juno de la NASA en Washington. "Fue un largo viaje llegar a Júpiter, pero estos primeros resultados ya demuestran que ha valido la pena el viaje.”


"Hay tantas cosas aquí que no esperábamos que hubiéramos tenido que dar un paso atrás y empezar a repensar esto como un Júpiter completamente nuevo", dijo Scott Bolton, investigador principal de Juno en el Instituto de Investigación del Suroeste en San Antonio.


Entre los hallazgos que desafían lo supuesto hasta ahora figuran los proporcionados por la cámara de Juno, JunoCam. Las imágenes muestran que ambos polos de Júpiter están cubiertos por tormentas del tamaño de la Tierra que están densamente agrupadas y rozándose entre sí.


"Estamos perplejos en cuanto a cómo podrían formarse, lo estable que es su configuración y por qué el polo norte de Júpiter no se parece al polo sur", dijo Bolton. "Estamos cuestionando si se trata de un sistema dinámico, y estamos viendo sólo una etapa. Durante el próximo año, vamos a ver si desaparece, o es una configuración estable y estas tormentas están circulando unas alrededor de otras."


Otra sorpresa viene del radiómetro de microondas de Juno (MWR), que muestra la radiación térmica de microondas de la atmósfera de Júpiter, desde la parte superior de las nubes de amoníaco hasta el fondo de su atmósfera. Los datos del MWR indican que las cinturones y otras zonas icónicas de Júpiter son misteriosos, con el cinturón cerca del ecuador penetrando hasta el fondo, mientras que en otras latitudes parecen evolucionar a otras estructuras. Los datos sugieren que el amoníaco es bastante variable y continúa aumentando tan lejos como se puede ver con MWR, que es de unos cientos de kilómetros.  


Antes de la misión Juno, se sabía que Júpiter tenía el campo magnético más intenso en el sistema solar. Las mediciones de la magnetosfera del planeta masivo con el magnetómetro de Juno (MAG), indican que el campo magnético de Júpiter es incluso más fuerte que los modelos esperados, y su forma más irregular. Los datos del MAG indican que el campo magnético excedió en gran medida las expectativas en 7.766 Gauss, aproximadamente 10 veces más fuerte que el campo magnético más fuerte encontrado en la Tierra.


"Juno nos está dando una visión del campo magnético cercano a Júpiter que nunca hemos tenido antes", dijo Jack Connerney, investigador principal adjunto de Juno y el líder de la misión de investigación de campo magnético en el Centro espacial Goddard de la NASA en Greenbelt, Maryland. "Ya vemos que el campo magnético parece voluminoso: es más fuerte en algunos lugares y más débil en otros. Esta distribución desigual sugiere que el campo puede ser generado por la acción de una dinamo más cerca de la superficie, por encima de la capa de hidrógeno metálico. Cada sobrevuelo nos acerca a más a poder determinar dónde y cómo funciona la dinamo de Júpiter".


Juno también está diseñada para estudiar la magnetosfera polar y el origen de las poderosas auroras de Júpiter. Estas emisiones de auroras son causadas por partículas que recogen la energía y golpean las moléculas atmosféricas. Las observaciones iniciales de Juno indican que el proceso parece funcionar de manera diferente en Júpiter que en la Tierra.
Juno está en una órbita polar alrededor de Júpiter, y la mayoría de cada órbita tiene lugar lejos del gigante del gas. 

Pero, una vez cada 53 días, su trayectoria se aproxima a Júpiter desde arriba de su polo norte, donde comienza un tránsito de dos horas (de polo a polo) volando de norte a sur con sus ocho instrumentos científicos recolectando datos e imágenes con su cámara JunoCam. La descarga de seis megabytes de datos recogidos durante el tránsito puede llevar día y medio.



El polo sur de Júpiter, observado por la nave espacial Juno desde una distancia de 52000 kilómetros. Las estructuras ovales son ciclones de hasta 1000 km de diámetro.  

Image Credit: NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

sábado, 27 de mayo de 2017

NASA Presenta los Primeros Resultados Científicos de la Misión Juno

27.05.17.- Los resultados científicos iniciales de la misión Juno de la NASA a Júpiter retratan al mayor de los planetas de nuestro Sistema Solar como un mundo complejo, gigantesco, turbulento… con ciclones del tamaño de la Tierra en los polos, sistemas de tormentas que descienden hacia el corazón del gigante de gas, y un enrome campo magnético e irregular que podría generarse más cerca de la superficie del planeta de lo que se pensaba.


La sonda espacial Juno fue lanzada el 5 de Agosto de 2011, entrando en la órbita de Júpiter el 4 de Julio de 2016. Los hallazgos ahora presentados corresponden al primer sobrevuelo de recolección de datos, que voló a 4.200 kilómetros de los remolinos de nubes de Júpiter el pasado 27 de Agosto.


“Estamos muy contentos de compartir estos primeros descubrimientos, que nos ayudan a comprender mejor lo que hace que Júpiter sea tan fascinante”, dijo Diane Brown, encargada del programa de Juno de la NASA en Washington. "Fue un largo viaje llegar a Júpiter, pero estos primeros resultados ya demuestran que ha valido la pena el viaje.”


"Hay tantas cosas aquí que no esperábamos que hubiéramos tenido que dar un paso atrás y empezar a repensar esto como un Júpiter completamente nuevo", dijo Scott Bolton, investigador principal de Juno en el Instituto de Investigación del Suroeste en San Antonio.


Entre los hallazgos que desafían lo supuesto hasta ahora figuran los proporcionados por la cámara de Juno, JunoCam. Las imágenes muestran que ambos polos de Júpiter están cubiertos por tormentas del tamaño de la Tierra que están densamente agrupadas y rozándose entre sí.


"Estamos perplejos en cuanto a cómo podrían formarse, lo estable que es su configuración y por qué el polo norte de Júpiter no se parece al polo sur", dijo Bolton. "Estamos cuestionando si se trata de un sistema dinámico, y estamos viendo sólo una etapa. Durante el próximo año, vamos a ver si desaparece, o es una configuración estable y estas tormentas están circulando unas alrededor de otras."


Otra sorpresa viene del radiómetro de microondas de Juno (MWR), que muestra la radiación térmica de microondas de la atmósfera de Júpiter, desde la parte superior de las nubes de amoníaco hasta el fondo de su atmósfera. Los datos del MWR indican que las cinturones y otras zonas icónicas de Júpiter son misteriosos, con el cinturón cerca del ecuador penetrando hasta el fondo, mientras que en otras latitudes parecen evolucionar a otras estructuras. Los datos sugieren que el amoníaco es bastante variable y continúa aumentando tan lejos como se puede ver con MWR, que es de unos cientos de kilómetros.  


Antes de la misión Juno, se sabía que Júpiter tenía el campo magnético más intenso en el sistema solar. Las mediciones de la magnetosfera del planeta masivo con el magnetómetro de Juno (MAG), indican que el campo magnético de Júpiter es incluso más fuerte que los modelos esperados, y su forma más irregular. Los datos del MAG indican que el campo magnético excedió en gran medida las expectativas en 7.766 Gauss, aproximadamente 10 veces más fuerte que el campo magnético más fuerte encontrado en la Tierra.


"Juno nos está dando una visión del campo magnético cercano a Júpiter que nunca hemos tenido antes", dijo Jack Connerney, investigador principal adjunto de Juno y el líder de la misión de investigación de campo magnético en el Centro espacial Goddard de la NASA en Greenbelt, Maryland. "Ya vemos que el campo magnético parece voluminoso: es más fuerte en algunos lugares y más débil en otros. Esta distribución desigual sugiere que el campo puede ser generado por la acción de una dinamo más cerca de la superficie, por encima de la capa de hidrógeno metálico. Cada sobrevuelo nos acerca a más a poder determinar dónde y cómo funciona la dinamo de Júpiter".


Juno también está diseñada para estudiar la magnetosfera polar y el origen de las poderosas auroras de Júpiter. Estas emisiones de auroras son causadas por partículas que recogen la energía y golpean las moléculas atmosféricas. Las observaciones iniciales de Juno indican que el proceso parece funcionar de manera diferente en Júpiter que en la Tierra.


Juno está en una órbita polar alrededor de Júpiter, y la mayoría de cada órbita tiene lugar lejos del gigante del gas. Pero, una vez cada 53 días, su trayectoria se aproxima a Júpiter desde arriba de su polo norte, donde comienza un tránsito de dos horas (de polo a polo) volando de norte a sur con sus ocho instrumentos científicos recolectando datos e imágenes con su cámara JunoCam. La descarga de seis megabytes de datos recogidos durante el tránsito puede llevar día y medio.



El polo sur de Júpiter, observado por la nave espacial Juno desde una distancia de 52000 kilómetros. Las estructuras ovales son ciclones de hasta 1000 km de diámetro. Image Credit: NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

sábado, 20 de mayo de 2017

Detectan una Atmósfera Inesperadamente Primitiva Rodeando a un “Neptuno Cálido”

13.05.17.- Un estudio que combina observaciones de los telescopios espaciales Hubble y Spitzer de la NAA ha revelado que el lejano planeta HAT-P-26b posee una atmósfera primitiva compuesta casi por competo de hidrógeno y helio. Situado a 437 años luz de distancia, HAT-P-26b orbita una estrellas que es el doble de vieja que el Sol.


El análisis es uno de los estudios más detallados hasta la fecha de un “Neptuno cálido,” un planeta que tiene el tamaño de Neptuno y se encuentra cerca de su estrella. Los investigadores determinaron que la atmósfera de HAT-P-26b está relativamente libre de nubes y posee una fuerte indicación de agua, aunque el planeta no sea un mundo de agua. Se trata de la mejor medición hasta la fecha de agua en un exoplaneta de este tamaño.


El descubrimiento de una atmósfera con esta composición en este exoplaneta tiene consecuencias sobre lo que piensan los científicos acerca del nacimiento y desarrollo de los sistemas planetarios. Comparado con Neptuno y Urano, los planetas de nuestro Sistema Solar con una masa similar, HAT-P-26b probablemente se formó más cerca de su estrella nodriza o más tarde en el desarrollo de su sistema planetario, o ambos.


“Los astrónomos han comenzado a investigar las atmósferas de estos distantes planetas con la masa de Neptuno, y casi de inmediato, hemos encontrado un ejemplo que va en contra de la tendencia de nuestro sistema solar”, dijo Hannah Wakeford, investigador postdoctoral en el Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland, y autor principal del estudio publicado el 12 Mayo de 2017 en la revista Science. “Este tipo de resultado inesperado es la razón por que realmente me gusta explorar las atmósferas de planetas alienígenas.”


Para estudiar la atmósfera de HAT-P-26b, los investigadores utilizaron datos de tránsitos - cuando el planeta pasa por delante de su estrella anfitriona. Durante un tránsito, una fracción de la luz estelar se filtra a través de la atmósfera del planeta, que absorbe algunas longitudes de onda de la luz, pero no otras. Observando cómo las firmas de luz de las estrellas cambian como resultado de este filtrado, los investigadores pueden trabajar hacia atrás para averiguar la composición química de la atmósfera.
En este caso, el equipo agrupó los datos de cuatro tránsitos medidos por el Hubble y dos vistos por Spitzer. Juntas, estas observaciones cubrieron una amplia gama de longitudes de onda de la luz amarilla a través de la región del infrarrojo cercano.


Como el estudio proporcionó una medida precisa del agua, los investigadores han podido utilizarla para estimar lo rico que es el planeta en elementos “metálicos”, es decir, más pesados que el hidrógeno y el helio, lo que a su vez indica cómo se formó el planeta.


Para comparar los planetas por sus metalicidades, los científicos utilizan el Sol como un punto de referencia, casi como describir cuánto bebidas tienen cafeína comparándolas con una taza de café. Júpiter tiene una metalicidad alrededor de 2 a 5 veces la del Sol. La de Saturno es aproximadamente 10 veces más que la del Sol. Estos valores relativamente bajos significan que los dos gigantes de gas están compuestos casi por completo de hidrógeno y helio.


Los gigantes de hielo Neptuno y Urano son más pequeños que los gigantes de gas pero más ricos en elementos más pesados, con metalicidades de alrededor de 100 veces la del Sol. Por lo tanto, para los cuatro planetas exteriores de nuestro sistema solar, la tendencia es que las metalicidades son más bajas para los planetas más grandes.


Los científicos creen que esto sucedió porque, cuando el sistema solar fue tomando forma, Neptuno y Urano se formaron en una región hacia las afueras de un enorme disco de polvo, gas y escombros que se arremolinaba alrededor del sol inmaduro. Resumiendo el complicado proceso de formación planetaria en pocas palabras: Neptuno y Urano habrían sido bombardeados con un montón de escombros helados que eran ricos en elementos más pesados. Júpiter y Saturno, que se formaron en una parte más caliente del disco, se habrían encontrado con menos de los restos helados.
Dos planetas más allá de nuestro sistema solar también se ajustan a esta tendencia. Uno de ellos es el planeta con la masa de Neptuno HAT-P-11b. El otro es WASP-43b, un gigante de gas dos veces más masivo que Júpiter.


Pero Wakeford y sus colegas descubrieron que HAT-P-26b rompe esa tendencia. Determinaron que su metalicidad es de sólo 4,8 veces la del Sol, mucho más cercano al valor de Júpiter que de Neptuno.

“Este análisis demuestra que hay mucha más diversidad en las atmósferas de estos exoplanetas de lo que esperábamos, lo que nos da una idea de cómo los planetas pueden formarse y evolucionar de manera diferente en nuestro sistema solar”, dijo David K. Sing de la Universidad de Exeter y segundo autor del artículo.



La atmósfera de un lejano “Neptuno cálido” HAT-P-26b, ilustrado aquí, es inesperadamente primitiva, compuesta principalmente por hidrógeno y helio. Image Credit: NASA/GSFC

sábado, 13 de mayo de 2017

La Fusión de Galaxias Tiene Agujeros Negros Encubiertos

10.05.17.- Los agujeros negros tienen mala fama en la cultura popular porque tragan todo lo que hay a su alrededor. En realidad, estrellas, gas y polvo pueden estar en órbita alrededor de los agujeros negros durante largos periodos de tiempo, hasta que una perturbación grande empuje el material hacia el interior.


Una fusión de dos galaxias es una perturbación de este tipo. Cuando las galaxias se combinan y sus agujeros negros centrales se aproximan uno al otro, el gas y el polvo de los alrededores son empujados hacia sus respectivos agujeros negros. Una enorme cantidad de radiación de alta energía es emitida cuando el material se precipita en espiral rápidamente hacia el agujero negro hambriento, que se convierte en lo que los astrónomos llaman un núcleo galáctico activo (AGN).


Un nuevo estudio utilizando el telescopio NuSTAR de la NASA demuestra que en las fases finales de la fusión de galaxias, se ha precipitado tan gran cantidad de gas y de polvo hacia el agujero negro que el AGN, de enorme brillo, queda oculto por ellos. El efecto combinado de la gravedad de las dos galaxias frena las velocidades de giro del gas y el polvo y esta pérdida de energía hace que el material se precipite hacia el agujero negro.


“Cuanto más avanzada es la fusión, más envuelto será el AGN”, dijo Claudio Ricci, autor principal del estudio. “Las galaxias que se hallan en un proceso de unión muy avanzado se encuentra completamente cubiertas por un envoltorio de gas y polvo”.


Ricci y sus colegas observaron las emisiones de rayos X de 52 galaxias. Aproximadamente, la mitad de ellas estaban en la fase final de una fusión. Además de la información del NuSTAR, los investigadores utilizaron la data de Swift y Chandra de la NASA, así como el XMM-Newton de ESA.





Comparaciónnd el crecimiento de un agujero negro supermasivo en dos tipos diferentes de galaxias. Image Credit: NASA/National Astronomical Observatory of Japan

sábado, 29 de abril de 2017

Cassini, Voyager e IBEX Ofrecen una Nueva Imagen de la Interacción del Sol con la Galaxia

25.04.17.- Nuevo datos de la misión Cassini, junto con mediciones de las dos naves espaciales Voyager e IBEX de la NASA sugieren que nuestro Sol y los planetas están rodeados por un gigante sistema de campo magnético desde el Sol, con forma casi esférica, lo que pone en duda la opinión alternativa de que los campos magnéticos solares se arrastran detrás del Sol en forma de una larga cola de cometa.

El Sol libera un flujo constante de material solar magnético - llamado viento solar - que llena el sistema solar interior, y que se extiende más allá de la órbita de Neptuno. Este viento solar crea una burbuja, de unos 37 millones de kilómetros de ancho, llamada heliosfera. Todo nuestro sistema solar, incluyendo la heliosfera, se mueve a través del espacio interestelar. La imagen predominante de la heliosfera era una estructura con forma de cometa, con una cabeza redondeada y una cola extendida. 

Pero los nuevos datos que cubren todo un ciclo de 11 años de actividad solar muestran que tal vez no sea así: la heliosfera puede ser redondeada en ambos extremos, haciendo que su forma sea casi esférica.

"En lugar de una prolongada cola parecida a un cometa, esta burbuja irregular de la heliosfera se debe al fuerte campo magnético interestelar - mucho más fuerte de lo que se esperaba en el pasado - combinada con el hecho de que la relación entre la presión de partículas y la presión magnética dentro de la heliosfera es alta," dijo Kostas Dialynas, científico espacial en la Academia de Atenas en Grecia y autor principal del estudio.

Un instrumento de Cassini, que ha estado explorando el sistema de Saturno durante más de una década, ha dado a los científicos nuevas pistas cruciales sobre la forma del final de la heliosfera, a menudo llamada heliocola. Cuando las partículas cargadas del sistema solar interno alcanzan el límite de la heliosfera, a veces se someten a una serie de intercambios de carga con átomos de gas neutro del medio interestelar, cayendo y recuperando electrones a medida que viajan a través de esta vasta región límite. Algunas de estas partículas se tornan hacia atrás, hacia el sistema solar interno, como átomos neutros de movimiento rápido, que pueden ser medidos por Cassini.

“El instrumento Cassini fue diseñado a imagen de los iones que se encuentran atrapados en la magnetosfera de Saturno,” dijo Tom Krimigis, director de los instrumento de las misiones Voyager y Cassini de la NASA con sede en el Laboratorio de Física Aplicada de la Universidad Johns Hopkins en Laurel, Maryland, y uno de los autores del estudio. “Nunca pensamos que íbamos a ver lo que estamos viendo y ser capaces de imaginar los límites de la heliosfera”.

Debido a que estas partículas se mueven a una pequeña fracción de la velocidad de la luz, sus viajes desde el Sol hasta el borde de la heliosfera y vuelta tardan años. Así que cuando el número de partículas que vienen del Sol cambia - normalmente como resultado de su ciclo de actividad de 11 año s- tardan años antes de que esto se refleje en la cantidad de átomos neutros que vuelven al sistema solar.
 
Las nuevas medidas de Cassini de estos átomos neutrales revelaron algo inesperado: las partículas provenientes de la cola de la heliosfera reflejan los cambios en el ciclo solar casi exactamente tan rápido como los que vienen del extremo de la heliosfera.

“Si la cola de la heliosfera se extendiese como un cometa, es de esperar que los patrones del ciclo solar se mostrarían mucho más tarde en los átomos neutros medidos”, dijo Krimigis.

Pero debido a que los patrones de la actividad solar se muestran tan rápidamente en las partículas de la cola como en las de la nariz, eso implica que la cola está a la misma distancia de nosotros que la nariz. Esto significa que la cola larga, similar a un cometa, que los científicos imaginaron, puede no existir en absoluto, en su lugar la heliosfera puede ser casi redonda y simétrica.

Una heliosfera redondeada podría provenir de una combinación de factores. Los datos de la Voyager 1 muestran que el campo magnético interestelar más allá de la heliosfera es más fuerte de lo que se pensaba anteriormente, lo que significa que podría interactuar con el viento solar en los bordes de la heliosfera y compactar la cola de la heliosfera.

La estructura de la heliosfera juega un papel importante en cómo las partículas del espacio interestelar - llamadas rayos cósmicos - alcanzan el sistema solar interno, donde están la Tierra y los otros planetas.

“Estos datos de las naves Voyager 1 y 2, Cassini y IBEX ofrecen a la comunidad científica un golpe de suerte para el estudio de los confines del viento solar”, dijo Arik Posner, científico del programa Voyager e IBEX de la NASA en Washington, DC. “A medida que continuamos recopilando datos de los bordes de la heliosfera, estos datos nos ayudarán a comprender mejor el límite interestelar que ayuda a proteger el ambiente terrestre de los dañinos rayos cósmicos."


Los nuevos datos de las misiones Cassini, Voyager e IBEX de la NASA muestran que la heliosfera - la burbuja de influencia magnética del Sol que rodea el sistema solar interior - puede ser mucho más compacta y redondeada de lo que se pensaba. Image Credit: Dialynas, et al. (izquierda.); NASA (derecha.)