sábado, 25 de febrero de 2017

Cómo Sería la Nueva Generación de Planetas del Tamaño de la Tierra Recién Descubiertos

24.02.17.- Un grupo de siete planetas del tamaño de la Tierra apiñados alrededor de una estrella enana roja ultrafría podrían ser poco más que trozos de rocas expulsados por la radiación, o mundos cubiertos de nubes donde podría hacer un calor tan achicharrante como en Venus.


O quizás podrían albergar formas de vida exóticas, prosperando bajo el crepúsculo rojizo del cielo.
Los científicos están considerando las posibilidades después del anuncio de esta semana: el descubrimiento de siete mundos en órbita alrededor de una estrella pequeña y fría, situado a unos 40 años luz de distancia, todos ellos aproximadamente como nuestro planeta en términos de peso (masa) y tamaño (diámetro ). 

Tres de los planetas residen en la "zona habitable" alrededor de su estrella, TRAPPIST-1, donde los cálculos sugieren que las condiciones podrían ser las adecuadas para que exista agua líquida en su superficie, aunque se necesitan observaciones de seguimiento para estar seguros.


Los siete son los primeros embajadores de una nueva generación de objetivos en la búsqueda de planetas.



Esta concepto artístico apareció el 23 de Febrero de 2017 en la portada de la revista Nature anunciando que la estrella TRAPPIST-1, una enana ultrafría, tiene siete planetas orbitándola del tamaño de la Tierra. Cualquiera de estos planetas podrían tener agua líquida. Los planetas que están más lejos de la estrella son más propensos a tener cantidades significativas de hielo.

Image Credit: NASA-JPL/Caltech

sábado, 18 de febrero de 2017

Dawn Descubre Evidencias de Material Orgánico en Ceres

17.02.17.- La misión Dawn de la NASA ha encontrado evidencias de materia orgánica en Ceres, un planeta enano y el cuerpo más grande del cinturón de asteroides entre Marte y Júpiter. 

Los científicos usando el espectrómetro visible e infrarrojo, VIR, de la nave espacial detectaron el material en y alrededor de un cráter del hemisferio norte llamado Ernutet. 

Las moléculas orgánicas son interesantes para los científicos porque son necesarias, aunque no suficientes, componentes de la vida en la Tierra.


El descubrimiento se suma a la creciente lista de cuerpos en el sistema solar donde se han encontrado compuestos orgánicos. 

Los compuestos orgánicos se han encontrado en ciertos meteoritos, tal y como se deduce en las observaciones telescópicas de varios asteroides. Ceres tiene muchos puntos en común con los meteoritos ricos en agua y compuestos orgánicos - en particular, un grupo de meteoritos llamados condritas carbonáceas.

 Este descubrimiento refuerza aún más la conexión entre Ceres y estos meteoritos.


"Esta es la primera detección clara de moléculas orgánicas en la órbita de un cuerpo del cinturón principal," dijo María Cristina De Sanctis, autora principal del estudio, con base en el Instituto Nacional de Astrofísica, Roma. 

El descubrimiento ha sido publicado en la revista Science.


Los datos presentados en el artículo de Science apoyan la idea de que los materiales orgánicos son nativos de Ceres. Los carbonatos y arcillas previamente identificados en Ceres proporcionan evidencias de la actividad química en presencia de agua y calor.

 Esto plantea la posibilidad de que los compuestos orgánicos se procesan de manera similar en un ambiente cálido rico en agua.

El descubrimiento de compuestos orgánicos se suma a los atributos de Ceres asociados con los ingredientes y las condiciones para la vida en el pasado lejano. 

Estudios previos han encontrado minerales hidratados, carbonatos, hielo de agua, amoníaco y arcillas que deben de haber sido alterados por el agua. 

Las sales y carbonatos de sodio, tales como las que se encuentran en las áreas brillantes del Cráter Occator, también se cree que se han salido a la superficie en forma de líquidos.


"Este descubrimiento se suma a nuestra comprensión de los posibles orígenes del agua y compuestos orgánicos en la Tierra", dijo Julie Castillo-Rogez, Dawn científico del proyecto Dawn con base en el Laboratorio de Propulsión a Chorro de la NASA en Pasadena, California.

El instrumento VIR fue capaz de detectar y mapear las ubicaciones de este material debido a su firma especial en la luz del infrarrojo cercano.

Los materiales orgánicos en Ceres se localizan principalmente en un área de aproximadamente unos 1.000 kilómetros cuadrados.

 La firma de los orgánicos es muy clara en el suelo del cráter Ernutet, en su borde sur y en una zona justo fuera del cráter hacia el suroeste. 

Otra área grande con firmas bien definidas se encuentra al otro lado de la parte del noroeste del borde del cráter y el material expulsado. Hay otras áreas ricas en contenido orgánico más pequeñas varios kilómetros al oeste y al este del cráter. 

Los materiales orgánicos también fueron encontrados en un área muy pequeña en el Cratér Inamahari, a unos 400 kilómetros de distancia de Ernutet.


En las imágenes de color visibles mejoradas de cámara de encuadre de Dawn, el material orgánico se asocia con las zonas que aparecen más rojas con respecto al resto de Ceres. 

El carácter específico de estas regiones se destaca incluso en los datos de imagen de baja resolución del espectrómetro de cartografía visible e infrarroja.


"Todavía estamos trabajando en la comprensión del contexto geológico de estos materiales", dijo el coautor del estudio Carle Pieters, profesor de ciencias geológicas en la Universidad Brown, Providence, Rhode Island.


Después de haber completado casi dos años de observaciones en órbita a Ceres, Dawn se encuentra ahora en una órbita altamente elíptica en Ceres, al pasar de una altitud de 7.520 kilómetros hasta casi 9.350 kilómetros. 

El 23 de Febrero, hará su camino a una nueva altitud alrededor de 20.000 kilómetros, aproximadamente a la altura de los satélites GPS sobre la Tierra, y en un plano orbital diferente. 

Esto pondrá a Dawn en condiciones de estudiar Ceres en una nueva geometría. 

A finales de primavera, Dawn observará a Ceres con el Sol directamente detrás de la nave espacial, de tal manera que Ceres aparecerá más brillante que antes, y tal vez revelará más pistas sobre su naturaleza.



Los científicos usando el espectrómetro visible e infrarrojo, VIR, de la nave espacial detectaron el material en y alrededor de un cráter del hemisferio norte llamado Ernutet.  

Image Credit: NASA/JPL-Caltech

sábado, 11 de febrero de 2017

Los Planetas de las Estrellas Enanas Rojas Podrían Enfrentarse a la Pérdida de Oxígeno

08.02.17.- La búsqueda de vida fuera de la Tierra comienza en las zonas habitables, las regiones alrededor de las estrellas donde las condiciones podrían provocar que el agua líquida - lo cual es esencial para la vida tal como y la conocemos - se acumule en la superficie de un planeta. 

Una nueva investigación de la NASA sugiere que algunas de estas zonas en realidad no podrían ser capaces de soportar la vida debido a erupciones estelares frecuentes - las cuales expulsan grandes cantidades de material estelar y radiación hacia el espacio - desde jóvenes estrellas enanas rojas.

Ahora, un equipo interdisciplinario de científicos de la NASA quiere ampliar la forma en la que las zonas habitables están definidas, teniendo en cuenta el impacto de la actividad estelar, lo que puede poner en peligro la atmósfera de un exoplaneta con la pérdida de oxígeno. Esta investigación fue publicada en la revista The Astrophysical Journal Letters el 6 de Febrero de 2017.

"Si queremos encontrar un exoplaneta que se pueda desarrollar y albergar vida, debemos averiguar qué estrellas son los mejores padres", dijo Vladimir Airapetian, autor principal del artículo y científico solar en el Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland . "Estamos llegando a comprender qué tipo de estrellas madre necesitamos."

Para determinar la zona habitable de una estrella, los científicos han considerado tradicionalmente cuánto calor y luz emite la estrella. Estrellas más masivas que nuestro sol producen más calor y luz, por lo que la zona habitable debe estar más lejos. Las estrellas más pequeñas y más frías se producen en zonas cercanas.

Pero junto con el calor y la luz visible, las estrellas emiten rayos X y radiación ultravioleta, y producen erupciones estelares tales como llamaradas y eyecciones de masa coronal, denominadas colectivamente clima espacial. Un efecto posible de esta radiación es la erosión atmosférica, en la cual las partículas de alta energía arrastran las moléculas atmosféricas - como el hidrógeno y el oxígeno, los dos ingredientes para el agua - hacia el espacio. Airapetian y el nuevo modelo de zonas habitables de su equipo toman en cuenta este efecto.

La búsqueda de planetas habitables a menudo se aplica a las enanas rojas, ya que éstas son las estrellas más recientes, más pequeñas y más numerosas del universo, y por lo tanto relativamente susceptibles a la detección de pequeños planetas.

"En el lado negativo, las enanas rojas también son propensas a erupciones estelares más frecuentes y poderosas que el sol", dijo William Danchi, astrónomo de Goddard y coautor del artículo. "Para evaluar la habitabilidad de los planetas alrededor de estas estrellas, necesitamos entender cómo equilibrar estos diversos efectos".

Otro factor importante de la habitabilidad es la edad de una estrella, dicen los científicos, basada en las observaciones que han obtenido de la misión Kepler de la NASA. Cada día, las estrellas jóvenes producen superllamaradas y erupciones al menos 10 veces más poderosas que las observadas en el sol. 

En sus contrapartes más maduras, que se asemejan a nuestro sol de mediana edad hoy en día, tales superllamaradas sólo se observan una vez cada 100 años.

"Cuando miramos a las enanas rojas jóvenes en nuestra galaxia, vemos que son mucho menos luminosas que nuestro sol hoy", dijo Airapetian. "Por la definición clásica, la zona habitable alrededor de las enanas rojas debe ser de 10 a 20 veces más cerca de lo que la Tierra está del Sol. Ahora sabemos que estas estrellas enanas rojas generan una gran cantidad de rayos X y las emisiones ultravioleta extremas en las zonas habitables de exoplanetas a través de llamaradas frecuentes y tormentas estelares."

Las superllamaradas causan erosión atmosférica cuando las radiaciones de alta energía y las radiaciones ultravioletas extremas primero rompen las moléculas en átomos y después ionizan los gases atmosféricos. Durante la ionización, la radiación golpea a los átomos y derriba a los electrones. 

Los electrones son mucho más ligeros que los iones recién formados, por lo que escapan de la atracción de la gravedad mucho más fácilmente y escapan hacia el espacio.



 Los opuestos se atraen; a medida que se generan más y más electrones cargados negativamente, creando una poderosa separación de carga que atrae iones cargados positivamente fuera de la atmósfera en un proceso llamado escape de iones.

"Sabemos que el escape de iones de oxígeno ocurre en la Tierra a una escala menor, ya que el sol exhibe sólo una fracción de la actividad de las estrellas más jóvenes", dijo Alex Glocer, astrofísico de Goddard y coautor del artículo. "Para ver cómo este efecto se escala cuando se obtiene más entrada de alta energía como se vería a partir de estrellas jóvenes, hemos desarrollado un modelo".

El modelo estima el escape de oxígeno en los planetas alrededor de las enanas rojas, asumiendo que no compensan con la actividad volcánica o el bombardeo de cometas. Varios modelos anteriores de erosión atmosférica indicaron que el hidrógeno es más vulnerable al escape de iones. Como elemento más ligero, el hidrógeno escapa fácilmente al espacio, presumiblemente dejando atrás una atmósfera rica en elementos más pesados como el oxígeno y el nitrógeno.

Pero cuando los científicos incluyeron superllamaradas, su nuevo modelo indica que las violentas tormentas de jóvenes enanas rojas generan suficiente radiación de alta energía como para permitir el escape de incluso oxígeno y nitrógeno, bloques de construcción para las moléculas esenciales de la vida.

"Cuanta más energía de rayos X y ultravioleta extrema haya, más electrones se generan y más fuerte será el efecto de escape de iones", dijo Glocer. "Este efecto es muy sensible a la cantidad de energía que la estrella emite, lo que significa que debe desempeñar un papel importante en la determinación de lo que es y no es un planeta habitable ".

Teniendo en cuenta el escape de oxígeno por sí solo, el modelo estima que una joven enana roja podría hacer que un exoplaneta cercano fuese inhabitable en pocas decenas a cien millones de años. 

La pérdida de hidrógeno atmosférico y oxígeno reduciría y eliminaría el suministro de agua del planeta antes de que la vida tuviera la oportunidad de desarrollarse.

"Los resultados de este trabajo podría tener profundas implicaciones para la química de la atmósfera de estos mundos," dijo Shawn Domagal-Goldman, científico espacial de Goddard que no participó en el estudio. "Las conclusiones del equipo tendrán un impacto en nuestros estudios en curso de las misiones de búsqueda de signos de vida en la composición química de esas atmósferas."

El nuevo modelo de habitabilidad tiene implicaciones para el planeta recientemente descubierto orbitando la enana roja Proxima Centauri, nuestro vecino estelar más cercano. Airapetian y su equipo aplicaron su modelo al planeta aproximadamente del tamaño de la Tierra, llamado Proxima b, que orbita Proxima Centauri 20 veces más cerca de lo que la Tierra está del sol.

Teniendo en cuenta la edad de la estrella madre y la proximidad del planeta a su estrella anfitriona, los científicos creen que Proxima b se ve sometida a torrentes de rayos X y radiación ultravioleta extrema de superllamaradas que ocurren aproximadamente cada dos horas. Estiman que el oxígeno escaparía a la atmósfera de Proxima b en 10 millones de años. Además, la intensa de actividad magnética y el viento estelar agudizan las ya duras condiciones climáticas espaciales. Los científicos concluyeron que es bastante improbable que Proxima b sea habitable.

"Tenemos resultados pesimistas para planetas alrededor de jóvenes enanas rojas en este estudio, pero también tenemos una mejor comprensión de qué estrellas tienen buenas perspectivas de habitabilidad", dijo Airapetian. "A medida que aprendemos más acerca de lo que necesitamos de una estrella madre, parece cada vez más que nuestro sol es sólo una de esas estrellas madre perfectas, para haber apoyado la vida en la Tierra".

sábado, 4 de febrero de 2017

Encuentro Entre un Gato Celeste y una Langosta Cósmica

01.02.17.- Los astrónomos han estudiado durante mucho tiempo las brillantes nubes cósmicas de gas y polvo catalogadas como NGC 6334 y NGC 6357.

 Esta gigantesca nueva imagen, obtenida por el VST (Very Large Telescope Survey Telescope) es la más reciente. Con unos 2.000 millones de píxeles, es una de las imágenes más grandes jamás dadas a conocer por ESO. 

Las sugerentes formas de las nubes han dado lugar a sus nombres, fáciles de recordar: la nebulosa Pata de Gato y la nebulosa Langosta, respectivamente.


NGC 6334 está situada a unos 5.500 años luz de la Tierra, mientras que NGC 6357 está más lejos, a una distancia de unos 8.000 años luz. Ambas están en la constelación de Escorpio, cerca del extremo de la cola puntiaguda.

El primero en ver huellas de estos dos objetos fue el científico británico John Herschel quien, en noches consecutivas de junio de 1837, los divisó durante su expedición de tres años hasta el cabo de buena esperanza en África del sur. 

En aquellos tiempos, la limitada potencia de los telescopios con los que contaba Herschel, que observaba visualmente, sólo le permitió documentar los "dedos" más brillante de la nebulosa de la Pata de Gato. 

Tuvieron que pasar muchas décadas para que las verdaderas formas de las nebulosas se revelaran a través de fotografías y se acuñaran sus populares nombres.


Los tres dedos visibles con telescopios modernos, así como las regiones similares a pinzas en la cercana nebulosa Langosta, son en realidad regiones de gas (principalmente hidrógeno), excitado por la luz de brillantes estrellas recién nacidas. 

Con masas de alrededor de diez veces la del Sol, estas estrellas calientes irradian una intensa luz ultravioleta. Cuando esta luz se cruza con los átomos de hidrógeno que permanecen en el vivero estelar que produce las estrellas, los átomos se ionizan.

 Como resultado, estos enormes objetos en forma de nube que brillan con la luz proveniente de los átomos de hidrógeno (y de otros elementos) se conocen como nebulosas de emisión.

Gracias a la potencia de la cámara OmegaCAM, de 256 megapíxeles, esta nueva imagen del VST (VLT Survey Telescope) revela ondulantes zarcillos de polvo que oscurecen la luz a lo largo de las dos nebulosas. Con un tamaño de 49.511 x 39.136 píxeles, esta es una de las imágenes más grandes jamás lanzadas por ESO.

OmegaCAM es la sucesora de la célebre WFI (Wide Field Imager) de ESO, instalada en el Telescopio MPG/ESO de 2,2 metros, en La Silla. 

La WFI fue utilizada para fotografiar la nebulosa de la Pata de Gato en 2010, también en luz visible, pero con un filtro que permite ver de forma más clara el brillo del hidrógeno (eso1003). 

Mientras tanto, el Very Large Telescope de ESO, ha echado un profundo vistazo a la nebulosa Langosta, capturando las numerosas estrellas calientes y brillantes que influyen en el color y la forma del objeto (eso1226).

Pese a los instrumentos de última generación utilizados para observar estos fenómenos, el polvo de estas nebulosas es tan espeso que gran parte de su contenido permanece oculto.

 La nebulosa Pata de Gato es uno de los viveros estelares más activos del cielo nocturno, y alimenta a miles de jóvenes estrellas calientes cuya luz visible no puede llegar hasta nosotros. 

Sin embargo, al observar en longitudes de onda infrarrojas, telescopios como VISTA, de ESO, pueden mirar a través del polvo y revelar la actividad de formación estelar que tiene lugar en su interior.


Ver nebulosas en diferentes longitudes de onda (colores) de la luz da lugar a diferentes comparaciones visuales por parte de observadores humanos. 

Al verla, por ejemplo, en luz infrarroja (una longitud de onda más larga), una parte de NGC 6357 se asemeja a una paloma y la otra una calavera; por tanto, ha adquirido el nombre adicional de nebulosa Guerra y Paz.


Las nebulosas Pata de Gato y Langosta. Image Credit: ESO

sábado, 28 de enero de 2017

NuSTAR Encuentra Nuevas Pistas Sobre la Extraña Supernova Camaleón

25.01.17.- "Estamos hechos de materia estelar", dijo esta famosa frase el astrónomo Carl Sagan. Las reacciones nucleares que ocurrieron en las estrellas antiguas generan gran parte del material que compone nuestro cuerpo, nuestro planeta y nuestro sistema solar. Cuando las estrellas explotan en muertes violentas llamadas supernovas, los elementos recién formados escapan y se extienden en el universo.

Una supernova en particular está desafiando los modelos de los astrónomos de cómo las estrellas que explotan distribuyen sus elementos. La supernova SN 2014C cambió drásticamente de apariencia a lo largo de un año, al parecer porque había tirado mucho material al final de su vida. Esto no encaja en ninguna categoría reconocida de cómo debe ocurrir una explosión estelar. Para explicarlo, los científicos deben reconsiderar las ideas establecidas sobre cómo las estrellas masivas viven sus vidas antes de explotar.

"Esta 'supernova camaleónica' puede representar un nuevo mecanismo de cómo las estrellas masivas expulsan elementos creados en sus núcleos al resto del universo", dijo Raffaella Margutti, profesora asistente de física y astronomía de la Universidad de Northwestern en Evanston, Illinois. Margutti dirigió un estudio sobre la supernova SN 2014C publicado esta semana en la revista The Astrophysical Journal.

Los astrónomos clasifican las estrellas explosivas en función de si el hidrógeno está o no presente en el evento. Mientras las estrellas comienzan su vida con el hidrógeno fundido en el helio, las estrellas grandes que se acercan a una muerte de supernova han usado el hidrógeno como combustible. Las supernovas en las que hay muy poco hidrógeno se llaman "Tipo I". Aquellas que tienen una abundancia de hidrógeno, que son más raras, se llaman "Tipo II".

Pero SN 2014C, descubierta en 2014 en una galaxia espiral a unos 36 millones de años luz de distancia, es diferente. Al observarla en longitudes de onda ópticas con diversos telescopios terrestres, los astrónomos concluyeron que SN 2014C se había transformado de una supernova de Tipo I a Tipo II después de que su núcleo se derrumbara, según se informó en un estudio de 2015 dirigido por Dan Milisavljevic en la Harvard- Smithsonian Center for Astrophysics en Cambridge, Massachusetts. Las observaciones iniciales no detectaron hidrógeno, pero después de aproximadamente un año quedó claro que las ondas de choque que se propagaban desde la explosión golpeaban una capa de material dominado por hidrógeno fuera de la estrella.

En el nuevo estudio, el telescopio NuSTAR (Nuclear Spectroscopic Telescope Array) de la NASA, con su capacidad única de observar la radiación en el rango de energía de rayos X - los rayos X de mayor energía - permitió a los científicos ver cómo la temperatura de los electrones acelerada por el choque de supernova cambió con el tiempo. Utilizaron esta medida para estimar lo rápido que se expandió la supernova y cuánto material hay en el envoltorio o cáscara externo.

Para crear esta cáscara, SN 2014C hizo algo realmente misterioso: arrojó una gran cantidad de material - en su mayoría hidrógeno, pero también elementos más pesados de décadas a siglos antes de explotar. De hecho, la estrella explusó el equivalente de la masa del sol. Normalmente, las estrellas no arrojan material tan tarde en su vida.

"Expulsar este material tarde en la vida es probablemente una forma en que las estrellas expulsan elementos, que producen durante sus vidas, de regreso a su ambiente", dijo Margutti.

Los observatorios Chandra y Swift de la NASA también se utilizaron para observar más la evolución de la supernova. La colección de observaciones mostró que, sorprendentemente, la supernova se iluminó en los rayos X después de la explosión inicial, demostrando que debe haber una cáscara de material, previamente expulsado por la estrella, que las ondas de choque habían golpeado.

¿Por qué la estrella tiraría tanto hidrógeno antes de explotar? Una teoría es que hay algo que falta en nuestra comprensión de las reacciones nucleares que se producen en los núcleos de estrellas masivas, propensas a las supernovas. Otra posibilidad es que la estrella no murió sola - una estrella compañera en un sistema binario puede haber influido en la vida y la muerte inusual del progenitor de SN 2014C.

 Esta segunda teoría encaja con la observación de que alrededor de siete de cada diez estrellas masivas tienen compañeros.

El estudio sugiere que los astrónomos deben prestar atención a las vidas de las estrellas masivas en los siglos antes de que exploten. Los astrónomos también continuarán con el seguimiento de las consecuencias de esta supernova desconcertante.

"La idea de que una estrella podría expulsar una cantidad tan grande de materia en un corto intervalo es completamente nueva", dijo Fiona Harrison, investigadora principal de NuSTAR con base en Caltech en Pasadena. "Es desafiar nuestras ideas fundamentales acerca de cómo las estrellas masivas evolucionan, y eventualmente explotan, distribuyendo los elementos químicos necesarios para la vida".


Esta imagen del observatorio de rayos X Chandra muestra la galaxia espiral NGC 7331, en el centro. Image Credit: NASA/CXC/CIERA/R.Margutti et al

sábado, 21 de enero de 2017

Según Datos de la NASA y el NOAA, 2016 Fue el Año Más Cálido

18.01.17.- Las temperaturas de la superficie de la Tierra en 2016 fueron las más cálidas desde que se comenzaron a hacer registros en 1880, según los análisis independientes realizados por la NASA y la Administración Nacional Oceánica y Atmosférica (NOAA).

La temperatura promedia en 2016 fue de 0.99ºC por encima del promedio del siglo 20. Esto hace que 2016 sea el tercer año consecutivo en establecer un nuevo récord de temperaturas superficiales medias globales.

Las temperaturas de 2016 siguen una tendencia de calentamiento a largo plazo, de acuerdo con los análisis realizados por científicos del Instituto Goddard de Estudios Espaciales (GISS) en Nueva York. Científicos del NOAA están de acuerdo con el hallazgo de que 2016 fue el año más caluroso de la historia basado en análisis por separado, independientes de los datos.

Debido a las ubicaciones de las estaciones meteorológicas y que las prácticas de medición cambian con el tiempo, existen incertidumbres en la interpretación de las diferencias de temperatura específicas de año a año. Sin embargo, incluso teniendo esto en cuenta, la NASA estima que 2016 fue el año más cálido con más de un 95 por ciento de certeza.

"2016 es notablemente el tercer año récord en esta serie", dijo el director del GISS Gavin Schmidt. "No esperamos años récord cada año, pero la tendencia de calentamiento a largo plazo es clara."
La temperatura media de la superficie del planeta ha aumentado 1,1 ºC desde finales del siglo 19, un cambio impulsado en gran medida por el aumento de dióxido de carbono y otras emisiones de origen humano en la atmósfera.

La mayor parte del calentamiento que se produjo en los últimos 35 años, con 16 de los 17 años más calientes registrados que ocurren desde 2001. No sólo 2016 ha sido el año más caluroso de la historia, sino que ocho de los 12 meses que componen el año - de Enero a Septiembre , con la excepción de Junio - fueron los más cálidos registrados para esos meses respectivos. Octubre, Noviembre y Diciembre de 2016 fueron los segundos más calurosos de esos meses en el registro - en los tres casos, detrás de los registros establecidos en el año 2015.

Los fenómenos meteorológicos como El Niño o La Niña, que calientan o enfrían el Océano Pacífico tropical superior y causan correspondientes variaciones en los patrones del viento y del clima global, contribuyen a las variaciones a corto plazo en la temperatura media global. Un calentamiento de El Niño estaba vigente durante la mayor parte del año 2015 y el primer tercio del año 2016. Los investigadores estiman que el impacto directo del calentamiento natural de El Niño en el Pacífico tropical aumentó la anomalía de la temperatura mundial anual para el 2016 en 0.12 ºC. 

Las dinámicas climáticas afectan a menudo a temperaturas regionales, por lo que no todas las regiones de la Tierra experimentaron temperaturas medias récord el año pasado. Por ejemplo, la NASA y el NOAA encontraron que la temperatura media anual de 2016 para los 48 estados de Estados Unidos fue el segundo más cálido registrado. Por el contrario, el Ártico experimentó su año más cálido jamás registrado, de acuerdo con el registro de hielo bajo el mar que se encuentra en esa región durante la mayor parte del año.

Los análisis de la NASA incorporan medidas de la temperatura superficial de 6.300 estaciones meteorológicas, observaciones y envíos basados en boyas de temperaturas de la superficie del mar, y las mediciones de temperatura de las estaciones de investigación en el Antártico. Estas mediciones se analizan utilizando un algoritmo que tiene en cuenta la variada distancia entre las estaciones de temperatura en todo el mundo y los efectos de calefacción urbana que podrían sesgar las conclusiones. El resultado de estos cálculos es una estimación de la diferencia de temperatura media global de un período de referencia de 1951 a 1980.

Científicos del NOAA utilizan gran parte de los mismos datos de temperatura, pero con un período de referencia diferente, y diferentes métodos para analizar las regiones polares y la temperatura global de la Tierra.


Las temperaturas de la superficie de la Tierra en 2016 fueron las más cálidas desde que se comenzaron a hacer registros en 1880, según los análisis independientes realizados por la NASA y la Administración Nacional Oceánica y Atmosférica (NOAA). Image Credit: NASA

sábado, 14 de enero de 2017

El Hubble Observa un Agujero Negro Desconcertante

13.01.17.- La hermosa galaxia espiral visible en el centro de la imagen es conocida como RX J1140.1 + 0307, una galaxia en la constelación de Virgo fotografiada por el Telescopio Espacial Hubble de la NASA/ESA, y que presenta un interesante rompecabezas. 

A primera vista, esta galaxia parece ser una galaxia espiral normal, al igual que la Vía Láctea, pero las primeras apariencias engañan!


La Vía Láctea, como la mayoría de las grandes galaxias, tiene un agujero negro supermasivo en su centro, pero algunas galaxias poseen agujeros negros de masa intermedia más ligeros. RX J1140.1 + 0307 es una galaxia de ese tipo, de hecho, su agujero negro central posee una de las masas más bajas de los agujeros negros conocidos en cualquier núcleo galáctico luminoso.

 Lo que desconcierta a los científicos acerca de esta galaxia en particular es que los cálculos no suman. Con una masa tan relativamente baja para un agujero negro central, los modelos para la emisión no pueden explicar el espectro observado. 

Tiene que haber otros mecanismos en juego en las interacciones entre las partes interior y exterior del disco de acreción que rodea el agujero negro.


Image Credit: ESA/NASA/Hubble